Report Prepared with:
The Gunnison Climate Working Group and Stakeholders in Gunnison, Colorado
For the
North Central Climate Science Center, Ft. Collins, Colorado
April 30, 2017

Recommended Citation:

Front Cover: Mountain Big Sagebrush Landscape, Ohio Creek Watershed © The Nature Conservancy (Betsy Neely)
Sagebrush Landscape:
Upper Gunnison River Basin, Colorado
Social-Ecological Climate Resilience Project
EXECUTIVE SUMMARY

Climate change is already having impacts on nature, ecosystem services and people in southwestern Colorado and is likely to further alter our natural landscapes in the coming decades. Understanding the potential changes and developing/implementing adaptation strategies can help ensure that natural landscapes and human communities remain healthy in the face of a changing climate.

An interdisciplinary team, consisting of social, ecological and climate scientists, developed an innovative climate planning framework and applied it with the Gunnison Climate Working Group and other stakeholders in the Upper Gunnison River Basin to identify adaptation strategies for two significant landscapes, sagebrush shrublands and spruce-fir forests, under three future (2020-2050) climate scenarios. This report summarizes the planning framework and results for the sagebrush landscape (see separate report for the spruce-fir results). This framework can be utilized to develop strategies for other landscapes at local, state, and national scales.

Diagrams, narrative scenarios and maps that depict climate scenarios and the social-ecological responses helped portray the climate story in the face of an uncertain future. Interviews and focus groups with agency staff and stakeholders, users of the sagebrush landscape, provided important context and improved the planning process for developing strategies that meet both social and ecological needs.

The primary ecological impacts of a changing climate affecting the sagebrush landscape are projected to be: increased severity of drought, proliferation of invasive species (especially cheatgrass), dieback of Wyoming big sagebrush, montane sagebrush shifting upwards in elevation, reduced productivity at drier sites, aspen mortality, and altered succession. These impacts were the focus for developing social-ecological climate response models based on stakeholders' participation during the workshops. In general, Wyoming big sagebrush occupies more xeric sites, which are likely to experience more change than the mesic mountain big sagebrush sites.

Utilizing climate stories to understand the social and ecological impacts to the sagebrush landscape, the team worked with stakeholders to develop three overarching landscape-scale adaptation strategies. Each of the strategies has a suite of potential actions required to reach a desired future condition.

The three key strategies are: 1) identify and protect climate refugia sites (persistent areas), 2) maintain or enhance the resilience of the climate refugia sites, and 3) accept, assist and allow for transformation in non-climate refugia sites.

If adopted by the local community, including land managers and landowners, the framework and strategies resulting from this project can help to reduce the adverse impacts of climate change, allowing for a more sustainable human and natural landscape.
ACKNOWLEDGEMENTS

This project would not have been possible without the participation of the Gunnison Climate Working Group (GCWG), an informal public-private partnership that has been working since 2009 to prepare for change in the Upper Gunnison River Basin. We particularly thank Gay Austin and Andrew Breibart (Bureau of Land Management), Jim Cochran (Gunnison County), Pat Magee, Jonathan Coop and Corrie Knapp (Western State Colorado University), Nathan Seward (Colorado Parks and Wildlife), Ken Stahlnecker and Theresa Childers (National Park Service), Frank Kugel and George Sibley (Upper Gunnison River Water Conservancy District), Liz With (Natural Resources Conservation Service), and Matt Vasquez (US Forest Service) for continued participation and expertise throughout this project. Special thanks to the many other stakeholders, agencies and representatives of the academic community who participated in interviews, focus groups, and/or a series of workshops for over almost three years, and reviewed products and reports.

We greatly appreciate funding, programmatic and technical support from the Department of Interior’s (DOI) North Central Climate Science Center (NCCSC) in Ft. Collins, Colorado. Special thanks to Jeff Morisette (NCCSC) for helping to assemble the great team to accomplish this project. We particularly thank our Principal Investigator Nina Burkardt, US Geological Survey, and Rudy Schuster, US Geological Survey, for guiding this project. We appreciate the technical support of cooperators on this project: Shannon McNeeley and Dennis Ojima (NCCSC), John Sanderson (The Nature Conservancy), and Molly Cross (Wildlife Conservation Society). We thank Molly Cross for advising the team at strategic steps. We thank Dan Williams (USFS Rocky Mountain Research Station) and Dan Murphy (University of Cincinnati) for providing technical advice on the social section aspects of this project. We also thank the USFS Rocky Mountain Research Station for providing financial support for social science expertise on this project.

Michelle Fink and Karin Decker (Colorado Natural Heritage Program) produced the bio-climatic models; Karin Decker formatted this report. Kristen Ludwig and Teresa Stoeppler (US Geological Survey) developed the Chains of Consequences. Imtiaz Rangwala (Western Water Assessment and NOAA) developed the climate scenarios. Terri Schulz (The Nature Conservancy) developed the Ecological Response Models, Situation Diagrams, and Results Chains. Special thanks to Marcie Bidwell (Mountain Studies Institute), who led a parallel effort in the San Juans, for working with us on project planning, methods and workshops, and for sharing best practices and lessons learned.

Thanks to Jim Worrall (US Forest Service, Rocky Mountain Region) for providing guidance on the bio-climatic models, and to Jonathan Coop (Western State Colorado University), Jim Cochran, (Gunnison County) and Ken Stahlnecker (Curecanti National Recreation Area and Black Canyon of the Gunnison National Park) for providing meeting space for workshops. Special thanks to Ken Stahlnecker and Brian St. George (Bureau of Land Management) for providing early support and inspiration for this project. Thanks to Bill Travis (University of Colorado) for his assistance on the original proposal and for mentoring Katie Clifford on the social science component of this project.
TABLE OF CONTENTS

Executive Summary ... i
Acknowledgements .. ii
Acronyms ... vi
Introduction .. 1
 Project Objectives .. 2
 Deliverables ... 2
 Funding .. 3
 Project Team and Gunnison Basin Partners .. 3
Overview of Planning Framework and Process .. 3
 Planning Framework Key Steps ... 3
Three Climate Scenarios for the Future ... 9
 Climate Scenario Summaries ... 9
Social-Ecological Vulnerabilities .. 12
 Interview Results ... 12
 Focus Group Results .. 13
Description of Sagebrush Landscape in the Gunnison Basin .. 15
Climate Change Impacts and Ecological Response Models ... 17
 Ecological Response Models .. 17
Impacts and Interventions .. 23
 Questions ... 23
 Methods .. 23
Goals and Objectives for the Sagebrush Landscape ... 25
 Goals ... 25
 Objectives .. 25
Adaptation Strategies, Outcomes and Actions for the Sagebrush Landscape .. 27
 Three Priority Adaptation Strategies for the Sagebrush Landscape .. 27
 Strategy 1: Identify and Protect Persistent Ecosystems ... 28
 Strategy 2: Proactive Treatment for Resilience ... 31
 Strategy 3: Assist and Allow Transformation .. 35
Overarching Challenges and Opportunities for Application of the Climate Adaptation Strategies... 39
 Challenges/Barriers ... 39
TABLE OF FIGURES

Figure 1. Social-ecological adaptation planning framework

Figure 2. Generalized depiction of change from 1971-2000 baseline

Figure 3. Major ecosystems of the Gunnison Basin

Figure 4. Results chain describing the Identify and Protect Persistent Areas Strategy

Figure 5. Results chain describing the Proactive Treatment for Resilience Strategy

Figure 6. Results chain describing the Assist and Allow Transformation Strategy

Figure C-1. Models selected for the three climate scenarios

Figure E-1. Wyoming big sagebrush Bio-climatic zones Hot/Dry

Figure E-2. Wyoming big sagebrush Bio-climatic zones Moderately Hot

Figure E-3. Wyoming big sagebrush Bio-climatic zones Warm/Wet

Figure E-4. Mountain big sagebrush Bio-climatic zones Hot/Dry

Figure E-5. Mountain big sagebrush Bio-climatic zones Moderately Hot

Figure E-6. Mountain big sagebrush Bio-climatic zones Warm/Wet

Figure F-1. Reference condition model for sagebrush landscape

Figure F-2. Ecological response model for sagebrush under the hot and dry scenario

Figure F-3. Ecological response model for sagebrush under the feast or famine scenario

Figure F-4. Ecological response model for sagebrush under the warm and wet scenario

Figure H-1. Example of Chains of Consequences

Figure I-1. Situation Analysis for Sagebrush Landscape (Morning Session)

Figure I-2. Situation Analysis for Sagebrush Landscape (Afternoon Session)

Figure J-1. Chain of Consequences Sagebrush Landscape, Drought. AM group

Figure J-2. Chain of Consequences Sagebrush Landscape, Drought. PM group

Figure J-3. Chain of Consequences Sagebrush Landscape, Wildfire. AM group

Figure J-4. Chain of Consequences Sagebrush Landscape, Wildfire. PM group

TABLE OF TABLES

Table 1. Rangewide temperature and precipitation characteristics of sagebrush

Table 2. Top impacts to the sagebrush landscape across the three climate scenarios

Table 3. Intervention categories with scores

Table C-1. Three Climate Scenarios for the Gunnison Basin Region by 2035

Table K-1. Impacts and actions for the “Identify and Protect Refugia” strategy

Table K-2. Impacts and actions for the “Proactive Treatment for Resilience” strategy

Table K-3. Impacts and actions for the “Assist and Allow Transformation” strategy
ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Adaptation for Conservation Targets Planning Framework</td>
</tr>
<tr>
<td>BLM</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>CNHP</td>
<td>Colorado Natural Heritage Program</td>
</tr>
<tr>
<td>COSF</td>
<td>Colorado State Forest Service</td>
</tr>
<tr>
<td>CPW</td>
<td>Colorado Parks and Wildlife</td>
</tr>
<tr>
<td>CSU</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>CU</td>
<td>University of Colorado- Boulder</td>
</tr>
<tr>
<td>DOI</td>
<td>Department of Interior</td>
</tr>
<tr>
<td>GCWG</td>
<td>Gunnison Climate Working Group</td>
</tr>
<tr>
<td>GMUG</td>
<td>Grand Mesa, Uncompahgre and Gunnison National Forest</td>
</tr>
<tr>
<td>MSI</td>
<td>Mountain Studies Institute</td>
</tr>
<tr>
<td>NCCSC</td>
<td>North Central Climate Science Center</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>RCP</td>
<td>Reflective Concentration Pathways</td>
</tr>
<tr>
<td>RMBS</td>
<td>Rocky Mountain Biological Station</td>
</tr>
<tr>
<td>SECR</td>
<td>Social-Ecological Climate Resilience Project</td>
</tr>
<tr>
<td>TNC</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>UM</td>
<td>University of Montana</td>
</tr>
<tr>
<td>USFS</td>
<td>United States Forest Service</td>
</tr>
<tr>
<td>USFS RMRS</td>
<td>United States Forest Service Rocky Mountain Research Station</td>
</tr>
<tr>
<td>UGRWCD</td>
<td>Upper Gunnison River Water Conservancy District</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geologic Survey</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>WCS</td>
<td>Wildlife Conservation Society</td>
</tr>
<tr>
<td>WSCU</td>
<td>Western State Colorado University</td>
</tr>
<tr>
<td>WWA</td>
<td>Western Water Assessment</td>
</tr>
</tbody>
</table>
INTRODUCTION

Environmental change is a constant feature of natural resource management in the western US. Fire, drought, insect infestations, and invasive species present pervasive challenges to conservation and management. Southwestern Colorado is already experiencing higher temperatures, more frequent and prolonged drought, earlier snowmelt, larger and more intense wildfires, more extreme weather events, and spread of invasive species (Saunders et al. 2008; Rangwala et al. 2010; Lukas et al. 2014). These changes are expected to intensify with climate change, putting livelihoods, ecosystems, public lands and species at risk (Lukas et al. 2014; Melillo et al. 2014).

Climate change poses significant challenges for both ecological systems, human communities and natural resource managers in southwestern Colorado. Resource managers need to consider climate change in management decisions and long-term planning. Yet, while they are increasingly being tasked to incorporate climate change, many barriers and challenges exist that complicate integrating climate information and producing robust adaptation strategies. Climate change information is often available at a coarse spatial scale and projected over long time periods with a large spread in projections between the different climate models. This makes it difficult for managers to integrate climate change into local management plans which often have shorter time horizons. Furthermore, the uncertainty of how climate will change in hard-to-model mountainous landscapes increases the difficulty of this task.

To address these challenges, a team of social, natural and climate scientists and planners worked for almost three years with the Gunnison Climate Working Group [1] (GCWG), a public-private partnership working to prepare for change in the Upper Gunnison River Basin, and other stakeholders on this collaborative effort to develop practical adaptation strategies for selected systems in the Gunnison Basin. The GCWG consists of natural resource management agencies, non-profit-organizations, university professors, local government officials and other stakeholders. The team was led by the Colorado Natural Heritage Program (CNHP), The Nature Conservancy (TNC), University of Montana (UM), and U.S. Geological Survey (USGS). A second team led by Mountain Studies Institute (MSI) and CNHP completed a similar effort in the San Juan Basin focused on pinyon-juniper woodlands and seeps and springs.

The goal of this project was to facilitate climate change adaptation that contributes to social-ecological resilience, ecosystem and species conservation, and sustainable human communities in southwestern Colorado. This collaborative effort has developed and piloted an integrated adaptation planning framework, consisting of tools and principles that merge the strengths of the iterative scenario process (Murphy et al. 2016), Climate-Smart Adaptation Cycle (Stein et al. 2014), Adaptation for Conservation Targets (ACT) planning framework (Cross et al. 2012), institutional

analysis, and climate change modeling.

The framework was used to generate practical strategies and scientific knowledge to advance climate change adaptation in the Gunnison and San Juan Basins and, potentially, other landscapes. A key objective of this project was to work with decision-makers to develop social-ecological adaptation strategies and actions to reduce the impacts of a changing climate on nature and people. To accomplish this objective, the project blended science (biophysical and social) with participatory approaches to integrate expert knowledge, land management decision making, and local needs.

For the purposes of this project, an adaptation target is a feature (livelihood, species, ecological system, landscape or ecological process) of concern that sits at the intersection of climate, social and ecological systems (adapted from Cross et al. 2012). Resilience is the ability to anticipate, prepare for, and adapt to changing conditions and withstand, respond to, and recover rapidly from disruptions. Resilience strategies may include managing for the persistence of current conditions, accommodating change, or managing towards desired new conditions. Resilience strategies may vary and desired conditions must be clearly identified (Department of Interior NPS, 2016).

Transformation is the expectation and acceptance that a conversion to a new ecosystem type is likely to occur. Transformation strategies support and facilitate system changes to an altered state based on a predicted future climate. These and other terms are defined in the glossary (Appendix A).

The intended audience for this report is the implementers of the adaptation strategies – the stakeholders, natural resource managers and partners who participated in the project process for almost three years: natural resource agencies, non-profit organizations, local officials, local community members, and others.

Project Objectives

1. Build knowledge of social-ecological vulnerabilities to inform adaptation planning.
2. Create social-ecological scenarios and models to facilitate decision-making under uncertainty.
3. Develop a detailed set of actionable and prioritized adaptation strategies designed to conserve key species, ecosystems, and resources, and to address the needs of local communities and natural resource managers.
4. Identify the adaptive capacities and the institutional arrangements needed to advance these strategies into decision-making arenas.
5. Document best practices for effectively bringing climate science into decision-making.

Deliverables

1. Innovative, effective, integrated social-ecological adaptation planning tools and principles that can be applied in other landscapes.
2. Climate scenarios and narrative scenarios of landscape change in southwestern Colorado and conceptual ecological models (ecological response models) that can be used in adaptation planning.
3. Summary reports on interview and focus group results.
4. An institutional analysis.
5. A set of actionable adaptation strategies for priority ecosystems that include specific conservation/adaptation targets and action steps/paths to implementation.
6. Manuscripts focused on adaptation decision-making and adaptive capacity, institutional analysis, and results and lessons learned from the integrated adaptation framework.
7. Guidelines and a toolkit for practitioners to employ integrated adaptation planning in other landscapes.

Funding

This project was funded by the Department of Interior's (DOI) NCCSC, Ft. Collins, Colorado. The Nature Conservancy provided additional funds, largely for workshops and meetings, to leverage the NCCSC grant. The US Forest Service Rocky Mountain Research Station (USFS RMRS) also provided financial support for social science expertise.

Project Team and Gunnison Basin Partners

The project team consisted of representatives of Colorado Natural Heritage Program (CNHP), Colorado State University (CSU), Mountain Studies Institute (MSI), USFS Rocky Mountain Research Station (RMRS), The Nature Conservancy (TNC), University of Cincinnati (UC), University of Colorado (CU) and University of Montana (UM), U.S. Geological Survey (USGS), and Western Water Assessment (WWA)/National Oceanic and Atmospheric Administration’s (NOAA) Physical Sciences Division.

Key partners and stakeholders participating in this project included the GCWG, consisting of the Bureau of Land Management (BLM)-Gunnison Field Office, Colorado Parks and Wildlife (CPW), Gunnison County, Curecanti National Recreation Area and Black Canyon of the Gunnison National Park (NPS), Natural Resources Conservation Service (NRCS), Upper Gunnison River Water Conservancy District (UGRWCD), US Forest Service (USFS) Gunnison Ranger District and Gunnison, Grand Mesa, Uncompahgre National Forest (GMUG), and Western State Colorado University (WSCU). See Appendix B for full list of workshop participants.

Overview of Planning Framework and Process

Planning Framework Key Steps

The project team developed and implemented a Social-Ecological Adaptation Planning Framework for this project (see Figure 1 below). Components were adapted from Stein et al. 2014; Cross et al. 2012; and Murphy et al. 2016. To meet the goals of integrating social and ecological systems, we added a social dimension and used the scenario process to address uncertainty. A key step, assessing ecological vulnerabilities, was conducted in the Gunnison Basin prior to this project (Neely et al. 2011). Knapp (2011) conducted a social resilience and vulnerability assessment of Sagebrush Landscape: Upper Gunnison River Basin, Colorado
land-based livelihoods in the Gunnison Basin. Implementation, measuring progress and adjusting strategies was beyond the scope of this project.

The key steps are summarized below and in a diagram in Figure 1.

1. Assess social-ecological vulnerabilities
2. Select socio-ecological landscapes to be the focus of the project and conduct literature search regarding natural processes and climate impacts
3. Develop three plausible climate scenarios
4. Develop ecological response models to help understand impacts under three climate scenarios to inform development of robust adaptation strategies for the targeted landscapes
5. Develop three narrative scenarios for focus groups
6. Understand decision-makers through interviews and focus groups
7. Develop social-ecological response models to identify impacts and interventions using Situation Analysis and Chain of Consequences methods.
8. Hold a series of workshops to develop and refine adaptation/actions to address current and future climate vulnerabilities, using the Results Chains method.

Figure 1. Social-ecological adaptation planning framework developed and applied through this project. Adapted from Stein et al. 2014, Cross et al. 2012, and Murphy et al. 2016.
Landscape Selection
In January 2014, the GCWG partners selected the sagebrush (and spruce-fir) landscape to be the focus of this project because of their social, economic, and ecological importance to the Gunnison Basin. Criteria considered included: vulnerability rank from Gunnison Basin Vulnerability Assessment (Neely et al., 2011), nested species and vulnerability rank, opportunity for success in building resilience, social concerns and livelihoods benefitting from the system, relevance to decision-makers regarding upcoming management decisions, available data, biodiversity values, and wildlife values.

Three Climate Scenarios
Uncertainties in the future climate present managers with important challenges in developing effective management plans. The scenario planning approach can offer important insights to managers for developing robust strategies to manage for future climate change impact under a range of plausible climate futures (National Park Service, 2013; Rowland et al. 2014; Murphy et al. 2016). To facilitate this, Imtiaz Rangwala (WWA/NOAA), developed attributes associated with three climate scenarios for southwestern Colorado and the Gunnison Basin for the year 2035 (i.e., 2020-2050 period). He used a base of 72 global climate models and two future greenhouse gas emissions scenarios (8.5 and 4.5 RCPs-Representative Concentration Pathways) from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) (Taylor et al. 2012) and then identified three potential clusters that represent different future pathways for the region. The scenario clusters represent three different plausible futures — a (i) hotter, drier future; (ii) a warmer future where annual precipitation increases; and (iii) a future with high inter-annual variability between hot dry years and warm wet years.

These climate scenarios were identified as: 1) Hot and Dry; 2) Warm and Wet; and 3) Feast and Famine (moderately hot, no change in precipitation over a long term, but increased inter-annual variability). See Appendix C.

Renée Rondeau, CNHP, researched the potential ecological impacts of the three climate scenarios to the targeted landscapes. This information was then used to develop a set of three narrative scenarios and ecological response models to assist managers in developing social-ecological adaptation strategies under the three climate scenarios.

Narrative Scenarios
Renée Rondeau, CNHP, and Imtiaz Rangwala, WWA, developed three narrative scenarios for the Gunnison Basin that described plausible sagebrush landscape changes that could take place over the next 20 years. The scenarios were descriptive stories depicting potential changes in the landscape based on the climate scenarios and are referred to as Hot & Dry, Warm & Wet, and Feast and Famine. These narrative scenarios were developed for use during the focus groups. They were reviewed by the project team and subject experts familiar with the ecosystems; their comments were incorporated into the final narrative tool that was used with stakeholders (see Appendix D).

Ecological Response Models
The team, working closely with natural resource managers and researchers, developed reference
condition and ecological response models for the sagebrush landscape in the Gunnison Basin. The purpose of the ecological response models was to evaluate and depict potential impacts of the three climate scenarios on the sagebrush landscape. The team held a series of workshops between June and November, 2015 to develop reference models and ecological response models to help evaluate potential impacts of three climate scenarios on the sagebrush landscape. Participants included representatives from BLM, CNHP, CPW, MSI, NRCS, TNC, USFS, WSCU, WWA, and private consultants (see Appendix B for list of participants).

Spatial-Ecological Response/Bioclimatic Models

Michelle Fink and Karin Decker, CNHP, developed the spatial ecological response models (or bioclimatic niche models) for the two dominant sagebrush species in the Gunnison Basin, Wyoming and Mountain big sage, using similar methods developed by Jim Worrall, USFS, and others (Rehfeldt et al. 2015; Worrall et al. 2016). The bioclimatic niche models were used to develop spatially explicit projections of climate change impacts to the sagebrush species. The model evaluates grids of historic climate and topographic variables, resulting in an estimate of the suitability for the species of each cell in the grid, giving a map of suitability at 90-meter resolution. The maps accurately predicted current species distributions.

Similarly, grids of future climate variables can be used to map suitability in the future. Three future climates were used that matched the climate scenarios used in this report and represent the decade around 2035 (see Appendix E).

For ease of interpretation and to enhance utility in management, the results are presented as spatially explicit change zones or bio-climatic zones:

1. **Lost** areas are where the future climate is highly unlikely to support sagebrush, and the area is most likely to transform after a large disturbance.
2. **Threatened** areas may be able to survive changes, but future climate is marginal and may hinder regeneration.
3. **Persistent** areas are the refugia or areas likely to maintain a suitable climate for sagebrush.
4. **Emergent** areas are where the future climate will likely support sagebrush habitat, but the area does not currently support sagebrush.

Results can be used to identify the most appropriate management actions for climate adaptation of vegetation for specific zones.

In assessing and using the results, it should be noted that there are many sources of uncertainty, and these are generally not quantifiable. These include errors and inaccuracies in training data and especially the fact that we don’t know which climate prediction best represents the future. Although these projections are the best and most detailed that are currently available, users should look at them as general directions of change. They should not be interpreted in detail at high resolution, and should not be considered to represent an exact point in time (J. Worrall, pers. Communication).
Understanding the Views of Decision-Makers
Katie Clifford, Geography Department, University of Colorado, Boulder, collected social science data through stakeholder interviews to assess the decision-making context of the sagebrush landscape. She also used focus groups, utilizing narrative scenarios, to assess future climate projections and impacts and identify potential adaptation strategies for the sagebrush landscape (see Appendix G).

Fieldwork was conducted from June through October, 2015. Ms. Clifford conducted 22 in-depth, semi-structured interviews with ranchers and public land managers at five agencies as well as four climate scenario-driven focus groups with 18 participants consisting of natural resource managers with a mix of agencies and specialties. Results were audio-recorded and transcribed verbatim to assist in analysis. Transcripts were then coded using Nvivo software. Coding was used to identify themes and facilitate analysis.

Each focus group was centered on the three climate scenarios described above (Hot and Dry, Warm and Wet, and Feast and Famine). Scenarios were presented individually and then followed by a series of questions regarding anticipated impacts, management needs, conflicts, compromises and potential strategies.

Socio-Ecological Response Models
The team worked with stakeholders to integrate social and ecological responses of climate change on the sagebrush landscape using two different approaches: Situation Analysis and Chain of Consequences (see Appendices G-I).

The Situation Analysis approach defines the context within which a landscape is operating and the major forces influencing the landscape, including the direct and indirect threats, opportunities, and scope (Foundations of Success, 2009). The process of developing situation diagrams helped the team to create a common understanding of the biological, environmental, social, economic, and political systems that affect targeted landscapes. This method has been used around the world by the Conservation Measures Partnership, including TNC, and many others.

The DOI Strategic Sciences Group developed the Chain of Consequences method for teams of scientists to identify the potential short- and long-term environmental, social, and economic cascading consequences of an environmental crisis and to determine intervention points to aid decision-making. The method has been used to identify the consequences and potential interventions of the Deep-Water Horizon Oil Spill in the Gulf of Mexico and Hurricane Sandy (DOI Strategic Sciences Working Group, 2010, 2012; Department of the Interior, 2013).

Stakeholder Adaptation Workshops
The Project Team hosted a series of workshops with the GCWG and other stakeholders from April 2015 through April 2016 to identify climate impacts to the landscapes under three climate scenarios, identify interventions (preliminary adaptation strategies), develop social-ecological response models, develop goals and objectives, and identify adaptation strategies and actions. These workshops are summarized below (also see Appendices H-K).
April 2015 Climate Adaptation Strategy Workshops

To prepare participants for the workshops, the team held a series of pre-workshop webinars on the following topics: 1) three climate scenarios; 2) ecological response models for sagebrush landscape; 3) methods for identifying preliminary interventions; and 4) preliminary results of interviews and focus groups. The team also developed a participant packet of materials including an agenda, materials produced to date, description of methods, and the approach for facilitating discussion focused on climate change.

The team then hosted a workshop in April, 2015 in Gunnison to develop social-ecological climate response models for the sagebrush landscape; identify a suite of preliminary interventions and potential high-level adaptation strategies for one climate scenario; and prepare for the fall workshop to develop in-depth adaptation strategies. Due to time constraints, this workshop focused only on one climate scenario, Feast and Famine, with the intention of addressing the two other scenarios at future workshops. The workshop provided an opportunity to compare two methods (Situation Analysis and Chain of Consequences) for developing interventions and identifying preliminary adaptation strategies.

The outcomes of the April, 2015 workshop included: 1) integrated findings from climate models, ecological response models, interviews and focus groups to produce social-ecological response models for the Feast and Famine climate scenario; 2) a list of preliminary interventions that provided a foundation for developing more in-depth adaptation strategies for the sagebrush landscape under three climate scenarios; and 3) improved stakeholder buy-in for developing and implementing local and regional interventions and adaptation strategies.

The team summarized the results of the workshop in a draft report entitled: Gunnison Basin Climate Adaptation Workshop, Phase 1: Sagebrush and Spruce-Fir Landscapes and distributed it for review by participants in August, 2015.

November 2015 Climate Adaptation Workshops

After the April workshop, the team synthesized the results into summary tables of interventions by impacts for the Feast and Famine scenario, and developed a process to identify interventions for the other two scenarios (Hot and Dry; Warm and Wet). The team then convened a small group of experts in November, 2015, to review the interventions developed for the Feast and Famine climate scenario and evaluate how well the interventions address the potential impacts of the two other climate scenarios. Participants reviewed the differences in the three climate scenarios, and then discussed the impacts, interventions and scoring. The participants recommended meeting again to refine the interventions, develop goals and objectives for the sagebrush landscape prior to holding a final workshop with a broad audience scheduled for April, 2016.

February 2016 Climate Adaptation Workshops

At the February, 2016 workshop, stakeholders drafted goals and objectives and developed a set of three climate adaptation strategies for the sagebrush landscape by creating Results Chains. Results Chains are diagrams that depict assumed causal linkages between strategies and desired outcomes needed to reduce climate impacts and other threats through a series of expected intermediate outcomes and actions (Margoluis 2013). This process helped to build a common understanding of
the outcomes and actions needed to reduce the impacts of climate change for each strategy.

April 2016 Climate Adaptation Workshops

At the final workshops held in April, 2016, participants revised the goals and objectives for the sagebrush landscape, refined social-ecological strategies to prepare the landscape and the people who depend on it for a changing climate, and identified challenges and opportunities for successful implementation of strategies. After partners/managers from CPW, USFS, NPS and NRCS presented the goals/objectives and *Results Chains*, participants provided feedback, refined the goals and strategies, refined the strategies/actions, and then identified challenges to implementation and opportunities for successful implementation. Following the workshop, the team revised the *Results Chains* based on the feedback and turned the diagrams into text to summarize each of the strategies, including desired outcome, intermediate outcomes, and actions.

Workshop Participants

Nearly 60 participants attended the workshops, including land and water managers, wildlife biologists, ecologists, foresters, researchers, planners, professors, researchers, social scientists, county officials, private consultants, and other stakeholders in the Gunnison Basin. The participants represented local, state and federal agencies and non-governmental organizations, including BLM, CNHP, CPW, Colorado State Forest Service (COFS), land trusts, Gunnison County, NPS, TNC, MSI, NRCS, RMBL, Saguache County, USFS, WSCU, WWA, and local county officials. See Appendix B for a full list of workshop participants.

THREE CLIMATE SCENARIOS FOR THE FUTURE

Climate Scenario Summaries

Projected changes in temperature and precipitation by 2035 for the three climate scenarios are shown in Figure 2 and Appendix C, and the consequences of these changes are summarized by scenario below. See Appendix C for table comparing the three climate scenarios.
Figure 2. Generalized depiction of change from 1971-2000 baseline, in annual precipitation and temperature for three climate scenarios (Hot and Dry=HD, Feast and Famine=FF, and Warm and Wet=WW).

Hot and Dry (hadgem2-es.1.rcp85)

Average annual temperatures are 5°F higher than in the late 20th century, and combined with a decrease in annual precipitation of 10%, produce drier conditions year-round. Summers at lower elevations are expected to have 30 additional days with temperatures above 77°F (25°C), and many nights with lows of 68°F (20°C) or above. Heat wave conditions are severe and long lasting. Rain events are likely to be less frequent, but more intense, and summer monsoon rains decrease (20% less than recent historic). Droughts comparable to 2002 or 2012 occur on average every five years.

Hot and dry conditions lead to:

- Longer growing season (+3 weeks), reduced soil moisture, increased heat stress
- Snowline moves up in elevation (+1200 ft)
- Frequent extreme spring dust-on-snow events
- Earlier snowmelt and peak runoff (+3 weeks, earlier with dust events). Decreased runoff (-20%)
- Longer fire season (+1 month) greater fire frequency (12x) and extent (16x) in high elevation forest
Feast and Famine (Moderately Hot/No Change in Precipitation, cesm1-bgc.1.rcp85)
Average annual temperatures are 3°F higher than in the late 20th century, and increased magnitude of inter-annual fluctuations in precipitation levels produces generally drier conditions, especially during the growing season, but some years with strong El Niño patterns may be quite wet. Summers at lower elevations are expected to have 14 additional days with temperatures above 77°F (25°C), and many nights with lows of 68°F (20°C) or above. Heat wave conditions are common every few years. Strong El Niño events can be expected every seven years on average, while droughts comparable to 2002 or 2012 occur on average every decade. During wetter years, increased temperatures lead to increased vegetation growth and subsequent greater fuel loads for wildfire.

A “feast or famine” pattern fluctuating between hot/dry and warm/wet conditions leads to:

- Longer growing season (+2 weeks)
- Snowline moves up in elevation (+900 ft)
- Increased extreme spring dust events in dry years
- Earlier snowmelt and peak runoff (+2 weeks, earlier with dust events). Decreased runoff (-10%)
- Very high fire risk during dry years following wet years, greater fire frequency (8x) and extent (11x)

Warm and Wet (cnrm-cm5.1.rcp45)
Average annual temperatures are 2°F higher than in the late 20th century, combined with an increase in annual precipitation of 10% produce generally warmer but not effectively wetter conditions in comparison with recent historic levels. Summers at lower elevations are expected to have seven additional days with temperatures above 77°F (25°C). Heat wave conditions may occur once a decade. Droughts may be more intense, but with fewer instances of extended drought.

Warmer and slightly wetter conditions lead to:

- Extended growing season (+1 week)
- Snowline moves up in elevation (+600 ft)
- Occasional extreme spring dust events in dry years, comparable to current conditions
- Earlier snowmelt and peak runoff (+1 week). No net change in runoff volume
- Increased fire frequency (4x) and extent (6x)
SOCIAL-ECOLOGICAL VULNERABILITIES

To better understand the views of decision-makers and social vulnerability, Katie Clifford, graduate student in Geography at the University of Colorado, completed social science research utilizing interviews and focus groups in the Upper Gunnison River Basin during 2014, working closely with Laurie Yung (UM), Nina Burkardt (USGS), Bill Travis (CU), and the team. See Appendix G for final reports summarizing the interview and focus group findings.

Interview Results

The interviews focused on developing a better understanding of how social-ecological systems and decision-making are influenced by climate change to help facilitate climate adaptation. Ms. Clifford conducted 22 in-depth, semi-structured interviews with ranchers and public land managers from five agencies in 2014. In November, 2015, she completed a report of her findings, entitled *Climate Adaptation in the Gunnison Basin, Colorado: Social Dimensions and Management Concerns for the Spruce-Fir and Sagebrush Landscapes* (Appendix G). The report summarizes findings from interviews with key decision-makers, designed to provide the following inputs to the larger research project: information on current use, importance, and status of the targeted landscapes, detailed insight into current social and decision-making context of the targets and approach to uncertainty, and identification of human communities in the Gunnison Basin likely to be impacted by climate-induced changes to the targeted landscapes, and the nature of those impacts.

Below is a summary of findings from interviews with key decision-makers, which were designed to provide inputs to the larger research project:

Adaptive and Flexible Management

- Adaptive management is a popular strategy for managing under uncertainty, but a gap exists between theory and practice because managers do not have the flexibility to respond quickly or adequate baselines to evaluate management strategies.
- Interviewees did not respond well to the idea of managing for a "range of future conditions" because of confusion over what it meant and frustration over how to implement the strategy.

Uncertainty and Variability

- Uncertainty elicits a range of responses from land managers from dread to curiosity to confidence; people were comfortable with future uncertainties when they were framed as disturbances.
- Climate change was understood through extremes and variability rather than a simple focus just on increasing temperatures.
- The historic and future range of variability is understood and bounded by previous climate experiences, with regular references to extreme drought years and high precipitation years.
- A lack of information is not the most critical barrier to implementing adaptation strategies in the Gunnison Basin.
Public Influences

- Interviewees did not deny climate change, but saw public skepticism as a barrier to implementing climate adaptation.
- Recreation pressures (and conflicts) are growing in the Basin and this is compounding the challenges of climate change.

Capacity

- The threat of an Endangered Species Act (ESA) listing for the Gunnison sage-grouse may have built greater capacity to respond to climate change because responding to this possibility built stronger relationships and experiences with collaboration.

Focus Group Results

Katie Clifford conducted four climate scenario-driven focus groups with 18 participants in Gunnison and Montrose, Colorado in 2014. The objectives of the focus groups were to learn how natural resource managers and users in the Basin would respond to changes under the three scenarios and obtain input on potential adaptation strategies.

In May, 2016, she completed a report of her findings, entitled *Climate Adaptation under a range of scenarios: Natural resource manager focus groups in the Gunnison Basin* (Appendix G). Below is a summary of the findings from four scenario-driven focus groups of natural resource managers. Managers were asked to consider how to incorporate a range of future conditions into resource decisions. The scenarios specifically keyed into the two target landscapes (sagebrush shrublands and spruce-fir forests) due to their social and ecological importance in the Gunnison Basin. These findings can help climate scientists understand how to better design useable climate science and inform resource managers and researchers about how to develop and support climate adaptation strategies in the Gunnison Basin and beyond.

The focus groups produced a set of key findings about planning for a range of future conditions, and potential adaptation strategies at a local scale, summarized below.

Perceived Risk

Participants largely agreed that a scenario (Feast and Famine) with high variability in precipitation and temperature would be the greatest challenge for management. Furthermore, managers thought that scenarios without clear warming and drying trends, such as moderate temperature increases or high variability, would be harder for the public to recognize, which could undermine adaptation efforts.

Sagebrush Landscape

Participants recognized that the sagebrush landscape was undergoing change and that it would be unreasonable to expect managers to maintain the current landscape into the future. The sagebrush shrublands were considered ecologically vulnerable to climate change and because of the strong dependence on this landscape by the ranching community, were also socially vulnerable.
Potential Strategies
Participants generated several strategies in response to the scenarios; many were not novel, but instead used and built on previous practices. This either indicates that managers might already have many of the tools and knowledge needed to respond to a changing climate or conversely that it is challenging for them to develop novel approaches. They discussed utilizing existing management strategies and borrowing exemplars from other locations. However, increased flexibility in terms of funding, procedures, and management practices would improve managers’ ability to plan for a range of future conditions.

Conflict and Cooperation
Participants interpreted potential changes through existing conflicts, with little discussion of new ones. This may indicate that climate change is not so different from other types of social-ecological changes, or that people have a hard time imagining subtle changes and altered future conditions. Participants felt the Basin has local capacity for cooperation, and they preferred bottom up approaches such as collaboration fostered by locals rather than mandated, top-down adaptation protocols.

Climate Science and Scenarios
Overall, participants reported that the scenarios helped them anticipate and visualize climate change impacts locally in the Gunnison Basin and consider a range of future conditions. However, participants requested more information about current baselines and requested that the status of human communities be incorporated into the narratives. Future work should also consider how to promote thinking beyond past experiences.
DESCRIPTION OF SAGEBRUSH LANDSCAPE, ECOSYSTEM SERVICES AND SOCIO-ECONOMIC OVERVIEW OF THE GUNNISON BASIN

The sagebrush landscape in the Upper Gunnison River Basin consists of a mosaic of ecosystems dominated by Wyoming big sagebrush (*Artemisia tridentata* ssp. *wyomingensis*) at the lower and drier elevations and mountain big sagebrush (*Artemisia tridentata* ssp. *vaseyana*) at the upper and wetter elevations (Figure 3). Climatic factors characteristic of these two sagebrush types are summarized in Table 1. Smaller patches of other ecosystems are scattered throughout the landscape including montane grasslands, black sagebrush (*Artemisia nova*), windswept low sagebrush, high elevation meadows, low-elevation aspen patches, low-elevation grasslands, wet meadows, and groundwater-dependent wetlands. The landscape ranges in elevation from 7,500 ft. to 9,500 ft. in the Gunnison Basin. At the upper elevations, it is bounded by aspen or mixed-conifer stand. This landscape consists of nearly 1/2 million acres within the Basin upstream of Blue Mesa Reservoir.

Numerous species and human communities in the Gunnison Basin rely on a functioning sagebrush landscape that may be at risk of changing with the future climate. Characteristic animals include Brewer’s sparrow, Sagebrush sparrow, Sage thrasher, Green-tailed towhee, Gunnison sage-grouse, Gunnison’s prairie dog, and Pronghorn. Several rare plant species occur in sagebrush shrublands, including Rollins’s twinpod and Weber’s catseye. Sagebrush shrublands provide habitat for four extremely or highly vulnerable species, including skiff milkvetch, violet milkvetch, Crandall’s rockcress, and the federally threatened Gunnison sage-grouse (seasonal habitats, including leks, nesting habitats, and brood-rearing habitats).

Ecosystem services provided by the sagebrush landscape include: ranching, livestock grazing, hay production, hunting, recreation including mountain biking and hiking, wildlife habitat, e.g., winter elk habitat, and carbon sequestration and storage in the face of a changing climate.

The population of the Upper Gunnison Basin is 23,009 (Department of Local Affairs 2010 a-b). Nearly 80% of the basin is public land, which supports about 12% of all jobs (Cheng 2006). The economy of the Basin has transitioned from agriculture and ranching to retirees and tourism (Department of Local Affairs 2010). While agriculture currently accounts for only 10% of the jobs, it impacts 96% of private land and 89% of United States Forest Service lands (Cheng 2006). Tourism and recreation are responsible for 23% of Gunnison Basin economic activity, and local counties have listed tourism as one of their top goals for economic growth (Office of Economic Development 2011 a-c). These land-based livelihoods depend directly on ecosystem services (Knapp 2011).
Figure 3. Major ecosystems of the Gunnison Basin, based on Southwest ReGAP. The two sagebrush types occupy the lower elevations of the Basin, with the montane sage steppe (Mountain big sagebrush) occupying the upper elevation and the Wyoming big sagebrush in the lower elevation.
Table 1. Rangewide temperature and precipitation characteristics of Wyoming big sagebrush and mountain big sagebrush.

<table>
<thead>
<tr>
<th></th>
<th>Wyoming big sagebrush</th>
<th>Mountain big sagebrush</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Annual average temperature is 44°F (range: 36-54 °F); Summer 66°F; Winter 27°F.</td>
<td>Summer temperature coupled with winter precipitation are important in controlling growth (Poore et al. 2009).</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Average annual precipitation is 9.5 inches (range: 7-16 inches); limited by summer moisture stress; aridity defines its southern range limit (Shafer et al. 2001).</td>
<td>Average annual precipitation is 12.2-29.5 inches with a mean of 17.7 inches -- similar to oak-mixed shrub. Potential evapotranspiration is less than for oak-mixed shrublands (Neely et al 2012).</td>
</tr>
<tr>
<td>Timing</td>
<td>About half falls during the growing season.</td>
<td>Winter snowpack and spring moisture is driving growth more than summer moisture. For precipitation, Poore et al. (2009) observed strong positive correlations between ring widths and winter precipitation, followed by spring precipitation and water year. Not correlated with early summer nor late summer precipitation or total summer precipitation.</td>
</tr>
<tr>
<td>Snow</td>
<td>Commonly less than 16 inches (Sturges and Nelson 1986). With snow cover of less depth and duration, WY big sagebrush communities provide greater opportunity for wintering ungulates than do many mountain big sagebrush communities.</td>
<td>Found in areas where snow cover commonly exceeds 15 inches.</td>
</tr>
</tbody>
</table>

CLIMATE CHANGE IMPACTS AND ECOLOGICAL RESPONSE MODELS

Ecological Response Models

The reference condition model and ecological response models for sagebrush, based on literature review (e.g., Chambers et al. 2016), local knowledge and expert opinion, describe how the landscape operates and provide a context for evaluating potential impacts of different climate scenarios. The models help identify outside environmental influences or drivers, and show the relationships among the main contributing factors that drive one or more of the direct threats that, in turn, impact the sagebrush landscape. The purpose of assessing the landscape under three different climate scenarios is to provide a foundation of scientific understanding of the range of possible futures that are projected for the region to inform the development of robust social-ecological adaptation strategies for sagebrush in the face of an uncertain future. See Appendix F for
diagrams of the ecological response models for the reference condition and under three climate scenarios.

Below are general descriptions of the reference condition and a snapshot of the future sagebrush landscape under each of the three climate scenarios.

Reference Condition Model

The Reference Condition Model is based on elevational differences in the sagebrush landscape. Grasslands and Wyoming big sagebrush form a mosaic at the lower elevations and drier areas, while mountain big sagebrush and meadows are found at the upper elevations and wetter areas. A sagebrush hybrid zone exists at mid elevation. Aspen patches as well as mesic meadows and tarts can be found scattered throughout the sagebrush landscape. These patches are relatively stable features of the landscape in the absence of disturbance. Fires move the sagebrush system to grasslands or meadows depending upon elevation; shrub regeneration and succession move the system back to sagebrush-dominated areas.

Hot and Dry Climate Scenario

This climate scenario is likely to be a significant system changer within the hotter and drier sites, in that Wyoming big sagebrush may not be able to regenerate once it dies. Drought or fire will likely kill the sagebrush, leading to a grassland system, and most likely a novel grassland that may be dominated by non-native grasses, e.g., cheatgrass. Drying is predicted to occur in the mesic meadows, leading to significant increases of big sagebrush cover in those areas. Isolated aspen stands are predicted to show significant shifts to sagebrush, mountain shrublands, or grasslands with drying.

| Hot and Dry | 5°F (2.7°C) increase and 10% decrease in precipitation; an effective 45% decrease in available moisture*
| | Extreme drying and reduction in soil moisture. |

Precipitation

Wyoming Big Sagebrush

The effective annual precipitation will drop to 7.5 inches which is unlikely to support the current sagebrush stands at the driest sites. **It will likely convert to a rabbitbrush shrubland or a novel grassland** (cheatgrass will likely be part of the grassland). It is likely that the upper zones of this type will have a hybrid sagebrush that will assist with adapting to climate change. It is likely that current stands of Mountain big sagebrush will have more Wyoming big sagebrush as well as the hybrid sagebrush. This scenario will be a system changer for stands below 8,000 feet.

Temperature & Snowpack runoff

Mountain Big Sagebrush

The increase in temperature will increase sagebrush germination and seedling survivorship, especially in higher elevations. In existing stands, it is likely that shrub density will increase. Peak runoff is 3 weeks earlier in this scenario, increasing the growing season.
Hot and Dry

5°F (2.7°C) increase and 10% decrease in precipitation; an effective 45% decrease in available moisture*

Extreme drying and reduction in soil moisture.

Drought

Wyoming Big Sagebrush

Droughts: Droughts like 2002, which killed individual sagebrush plants, will occur every five years on average. The 2002 drought was the worst drought in 114 years in Gunnison and it could become the new “normal drought”.

In some areas, 90% sagebrush dieback was measured in response to the 2002 drought.

Low-elevation Aspen (near sagebrush)

The low-elevation aspen stands will suffer. The 2002 drought killed or severely degraded many of these stands and these types of drought are projected to occur every 5th year under this scenario. This drought frequency will not allow aspens to recover, therefore aspen islands will transition into sagebrush or other montane shrubs e.g., rose and currants.

Wildlife

Wyoming Big Sagebrush

In this scenario, the warm summer temperatures and 20% below average summer precipitation are like what Yellowstone has recently experienced. The green-up occurred faster (i.e., the rate of green up was faster than in cooler years) and the duration of nutritional grass was less; this led to lower fat reserves on the elk during the fall and winter.

This lower fat reserve led to a decreased pregnancy rate. The herds that had access to irrigated hay meadows did not suffer from the drought and their fat reserves and pregnancy rate remained high. The other scenarios do not exhibit this same pattern of dry and very hot summers so the other scenarios may not impact elk herds as much. In this scenario, elk may negatively impact irrigated hay meadows and cause more conflict with the ranching community. Fewer forbs could impact Gunnison sage-grouse chick survival. This scenario could also impact cattle operations with calves having lower weaning weights.

Fire

Wyoming Big Sagebrush

Fire frequency may increase due to increased cheatgrass invasion, warmer temperatures, and drier conditions. Because Wyoming big sagebrush is not very resistant or resilient to fires, burned patches will transition into a novel grassland (with cheatgrass). The associated mesic meadows will dry out and begin filling in with shrubs (sagebrush, rabbitbrush, shrubby cinquefoil). Seeps and springs and other groundwater dependent wetlands will dry up in most years.

Mountain Big Sagebrush

Fire frequency will likely increase; however, a rapid recovery is expected, especially at the upper elevation band.

Succession

Mountain Big Sagebrush

The lower elevation band will start transforming into a Wyoming big sagebrush type (or the hybrid). The Mountain big sagebrush system will begin migrating upwards in elevation or into nearby subalpine/upper montane mesic meadows. The existing and adjacent mesic meadows will likely start filling in with sagebrush and shrubby cinquefoil as these meadows effectively dry out. There is also potential for pinyon-juniper invasion into the sagebrush.
Hot and Dry
5°F (2.7°C) increase and 10% decrease in precipitation; an effective 45% decrease in available moisture*
Extreme drying and reduction in soil moisture.

Invasives
Mountain Big Sagebrush
Cheatgrass is likely to invade, especially in the lower elevation bands of this type.

*This estimate is based on this relationship for this region: 1°F increase in temperature = 5% decrease in runoff; 5% decrease in precipitation = 10% decrease in runoff

Feast and Famine (Moderately Hot) Climate Scenario

In this climate scenario, the changes associated with the Hot and Dry climate scenario will be less severe on both temporal and spatial scales. Drying is predicted to occur in meadows leading to increase of montane sagebrush. Aspen is predicted to show significant shifts to either sagebrush or grasslands with drying. In addition, a novel type of system, uncharacteristic grasslands dominated by non-native grasses, will occur on the landscape. Fires may increase with the high amplitude between wet and dry years; i.e., wet years build up high fuels which may increase fire risk during hot and dry years.

Moderately Hot
3°F (1.6°C) increase and no change in precipitation; an effective 15% decrease in available moisture*

Precipitation
Wyoming Big Sagebrush

Currently Gunnison has approx. 50 inches of snow each winter which is important for the sagebrush. It is likely that the spring snowpack will decrease with the 2°F warmer spring temperatures. This will have a negative impact on WY big sagebrush stands and will likely decrease the density of sagebrush at areas below 8,500 feet. Species composition will be altered, resulting in less overall biomass, negatively impacting Gunnison sage-grouse winter habitat. However, it may be possible that the birds could move up in elevation. The drier end of the sagebrush belt will see a decrease in associated mesic meadows as the groundwater dependent wetlands (seeps and springs) will be less reliable.

In this scenario, substantial decreases in soil moisture relative to present (>10%) are expected. However, it should be suitable for sagebrush.

Drought
Wyoming Big Sagebrush

Droughts: Droughts like 2002, which killed individual sagebrush plants, will occur every ten years on average. Summer heat waves like 2002 will occur about every 3 years.

Low-elevation Aspen (near sagebrush)

In this scenario, island aspen stands may decline due to the warmer temperatures wicking away soil moisture. Some of the wetter stands or stands on north-facing slopes will likely survive.
Moderately Hot

3° F (1.6 °C) increase and no change in precipitation; an effective 15% decrease in available moisture*

Fire

Wyoming Big Sagebrush

The high range in wet vs. dry years may create higher fire risk compared to the reference condition with large fuel build up in wet years followed by severe fire risks in dry years.

Mountain Big Sagebrush

Fire frequency will likely increase. However, a rapid recovery is expected especially at the upper elevation band.

Succession

Wyoming Big Sagebrush

The changes to the Wyoming big sagebrush type are likely to primarily be a shift in species composition, transitioning into more non-native grasses and fewer forbs.

Mountain Big Sagebrush

Mountain big sagebrush will expand upwards as well as into nearby mesic meadows. However, the rate of migration will be slower than in the previous scenario. Existing stands will likely see an increase in sagebrush density. The existing mesic meadows will experience drying periods that will allow shrub density to increase—the rate will be less than in the previous scenario however it will still occur.

Invasives

Mountain Big Sagebrush

Cheatgrass will still become an invader of the lower elevation bands, as in the hot and dry scenario, however the area that it covers will be less.

This estimate is based on this relationship for this region: 1°F increase in temperature = 5% decrease in runoff; 5% decrease in precipitation = 10% decrease in runoff

Warm and Wet Climate Scenario

In this climate scenario, moderate amounts of drying are predicted to lead to more sagebrush in mesic systems and aspen. Aspen is also predicted to dieback and shift, to a moderate degree, into lower elevation grasslands. The hybrid zone is also predicted to increase. This is the best-case scenario and would have the least impact.

Warm and Wet

2° F (1.2 °C) increase and 10% increase in precipitation; despite the 10% increase in precipitation, moisture stress is still possible due to the 2 F increase.

Precipitation

Mountain Big Sagebrush

Increased winter precipitation – uncertainty about how more snow may impact winter sage grouse habitat. Some snow fences made areas too wet for sagebrush so it is possible that some areas would see sagebrush mortality due to higher winter moisture, especially in the snow deposition areas.
<table>
<thead>
<tr>
<th>Warm and Wet</th>
<th>2° F (1.2 °C) increase and 10% increase in precipitation; despite the 10% increase in precipitation, moisture stress is still possible due to the 2 F increase.</th>
</tr>
</thead>
</table>
| **Drought** | **Wyoming Big Sagebrush**
Drought years like 2002, which killed individual sagebrush plants, occur about every 15 years (similar to the current frequency) and should still allow regeneration of sagebrush. However, most stands will still have a mix of live and dead shrubs. While the drought frequency isn’t altered the drought intensity increases. |
| **Low-elevation Aspen (near sagebrush)** | Some of the aspen island stands will be able to recover from the intense droughts such as 2002 since the severe drought frequency will be around 15 years. However, many of these aspen islands are expected to degrade and some to completely transition into a mountain shrubland due to higher temperatures. |
| **Elk** | **Wyoming Big Sagebrush**
Winter use by ungulates may increase as snowpack in the Wyoming and Mountain big sagebrush increases. The deeper the snow levels at lower elevations, the more browsing occurs on any accessible sagebrush. This will put further stress on the sagebrush community condition. |
| **Fire** | **Wyoming Big Sagebrush**
The fire frequency will be similar to the current regime. |
| **Mountain Big Sagebrush** | Fire frequency will be similar to current regime. |
| **Succession** | **Wyoming Big Sagebrush**
In this scenario, most of the current sagebrush stands will likely be maintained. However, the condition will start to degrade with more cheatgrass and other non-natives taking hold. This is very similar to the moderately hot and no change in precipitation scenario, however the rate and scope is less in this scenario. Biomass of native grasses and forbs will likely decrease from the current state. |
| **Mountain Big Sagebrush** | Mountain big sagebrush will be the least impacted in this scenario with the least amount of change in space and time. However, this does not mean there will be no change. Mesic meadows will still be invaded by sagebrush and shrubby cinquefoil, but at a slower rate than the previous scenarios. Species composition may shift, favoring grasses over forbs however it may not be too noticeable. |

This estimate is based on this relationship for this region: 1°F increase in temperature = 5% decrease in runoff; 5% decrease in precipitation = 10% decrease in runoff
IMPACTS AND INTERVENTIONS

To focus our attention on the most robust and large-scale adaptation strategies for the sagebrush landscape, we refined and filtered the list of impacts and intervention points developed at previous workshops. These priority intervention points were used as starting points for strategy development to address the three climate scenarios (See Appendix K).

Questions

To assist us with filtering and prioritizing the impacts and interventions, we asked three primary questions for the sagebrush landscape:

1. Which impacts are most likely to be significant across all climate scenarios?
2. Which intervention points are most likely to work across all three climate scenarios?
3. Which intervention points are likely to work at a landscape-level scale?

Methods

To answer the above questions, we categorized the interventions by the impacts that they addressed. We devised a process to score and prioritize the impacts and their interventions by their anticipated significance, likelihood across all scenarios, and landscape scale (large, medium, or small). Impacts and interventions with a high score denoted significant impacts and interventions and would be the focus of our adaptation strategies workshop. We developed a ranking spreadsheet to maintain the scores, summarized in Tables 2-3. Thus, the strategies that we would focus on were: 1) likely to be effective in reducing climate impacts at a large landscape-level scale and 2) likely to be effective across three climate scenarios.

Table 2. Top impacts to the sagebrush landscape across the three climate scenarios. The higher the score, the greater the scope and severity of the impact across all three scenarios (the highest score possible was 8).

<table>
<thead>
<tr>
<th>Impact</th>
<th>Average Score</th>
<th>Number of Distinct Impacts/Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered species composition</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Altered hydrologic regime</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Education/Public Awareness</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Elevated fire risk</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Erosion</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Invasive species</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Research</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Social and economic impacts</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Wildlife</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 3. Intervention categories with scores and landscape scale. The average of total score is a sum of the intervention and impact score. There were multiple impacts and interventions associated with an intervention category, thus we took the average. The total score, coupled with scale, was used to define which intervention categories would be the focus of our adaptation strategy workshop. The bolded intervention categories became our strategies. Cross cutting denotes the need to subsume these interventions into all strategies.

<table>
<thead>
<tr>
<th>Intervention Category</th>
<th>Average of Total Score</th>
<th>Average of Intervention Score</th>
<th>Average of Impact Score</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education and outreach</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Cross-cutting</td>
</tr>
<tr>
<td>Identify and protect refugia</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>Large</td>
</tr>
<tr>
<td>Proactive treatment for resilience</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>Large</td>
</tr>
<tr>
<td>Wetland restoration for transformation and resilience</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>Large</td>
</tr>
<tr>
<td>Riparian/wetland management</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>Large</td>
</tr>
<tr>
<td>Recreation management</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>Small scale</td>
</tr>
<tr>
<td>Assist/allow transformation</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>Large</td>
</tr>
<tr>
<td>Grazing management</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>Large</td>
</tr>
<tr>
<td>Build water-holding or efficiency infrastructure</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Cross-cutting</td>
</tr>
<tr>
<td>Water management</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Cross-cutting</td>
</tr>
<tr>
<td>Research and monitoring</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Cross-cutting</td>
</tr>
<tr>
<td>Proactive fire management</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>Large</td>
</tr>
</tbody>
</table>

The top climate change impacts to the sagebrush landscape across the three climate scenarios are, altered species composition and altered water regime (see Table 2). To help narrow down the list of interventions to focus on, we evaluated total scores for impacts, interventions and landscape scale. We also grouped interventions where appropriate, e.g., wetland restoration for transformation and resilience, riparian/wetland management and grazing management into the proactive treatment for resilience category. We did not single out cross-cutting interventions such as education and outreach primarily because these strategies are likely to be nested under one of the other strategies, e.g., assist/allow transformation. It is also important to note that not selecting a strategy did not mean that the strategy was not worthy of more attention; rather, in-depth strategies could not be developed for everything in the final workshop due to time constraints.

The three strategies identified for further development were:

1. **Identify and protect refugia**: protection, management and restoration are much more likely to succeed if within a climate refugia.
2. **Proactive treatment for resilience**: this strategy had the most number of identified interventions and generally reflects what managers are already doing. It is most likely to succeed in areas that are considered refugia.
3. **Accept, assist and allow transformation**: it is important to recognize that transformation is most likely to occur in emergent and lost climate zones and we may be able to assist or allow, where appropriate.
GOALS AND OBJECTIVES FOR THE SAGEBRUSH LANDSCAPE

Goals

Protect, maintain and enhance large interconnected, naturally functioning and resilient sagebrush landscapes across all jurisdictional boundaries that support stable or increasing viable populations of sagebrush obligate species, livelihoods and ecosystem services (e.g., clean water, recreation opportunities, hunting, food and shelter, carbon sequestration) in the face of a changing climate.

- Improve limiting habitat for Gunnison sage-grouse and its ability to adapt to climate change -- especially brood-rearing habitat, nesting areas, and winter habitat capable of supporting a viable population of the Gunnison sage-grouse.
- Maintain and restore the hydrologic function and desired vegetation in riparian areas and wet meadows to benefit Gunnison sage-grouse and other wildlife, while enabling ranchers to adapt to climate change.
- Enhance resiliency of the sagebrush landscape to climate change by maintaining ecological processes, restoring and/or improving the condition of the system to support a variety of wildlife species and ecosystem services, including livestock grazing and recreation.
- Manage human uses on the landscape in ways that benefit the health and sustainability of the land and native species, e.g., recreation, development, grazing, ranching, energy development, water systems, mining, roads, and research.
- Reduce the impacts of stressors that will be exacerbated in a changing climate.
- Allow transformation within future climate “lost” and “emergent” zones to occur, when possible.

Objectives

1. By 2035, conserve areas identified as sagebrush landscape climate refugia and linkages that represent at least 80% of the potential refugia and linkages within the basin for sagebrush obligate species (e.g., sagebrush sparrow, sage thrasher, Brewer’s sparrow, and Gunnison sage-grouse).
2. By 2035, within refugia and linkages, increase the grass and forb component of sagebrush communities towards reference condition as described in ecological site description and maintain sagebrush cover with 80% confidence level to improve habitat for small mammals, Gunnison sage grouse and other sagebrush obligate species.
3. By 2035, reduce and prevent the impact of invasive species such as cheatgrass with 80% confidence level so that sagebrush systems are more resilient to climate change. Focus control efforts on highest priority pathways and sagebrush areas, such as along/near roadways where invasive species are starting to infiltrate large, contiguous patches of sagebrush and large sheep bedding areas.
• Conduct research to determine whether we are losing natives where cheatgrass is invading (2015 wet spring was ideal for cheatgrass invasion) and if sagebrush and bunch grasses are being outcompeted.
• Conduct cheatgrass monitoring and treatment.

4. By 2035, restore high priority degraded habitat to improve riparian and wetland areas within the sagebrush landscape. Restoration will be measured by the cover of wetland obligate plants species with 80% confidence level.

5. By 2035, implement land management practices in wetlands and riparian areas to increase carbon storage by 50% with an 80% confidence level, while benefitting Gunnison sage-grouse, other wildlife, and other ecosystem services.
• Conduct research to determine the current levels of carbon in soils and estimate the potential increase in carbon storage.

6. By 2035, conduct experiments and learn from potential treatments and ongoing monitoring to assist transformation within areas projected to lose or gain sagebrush (lost and emergent zones).
• Incorporate new information building on knowledge as it becomes available, define what success looks like, and condition description.

Note: estimated numbers are from the Gunnison sage-grouse Rangewide Conservation Plan and the USFWS, and Tier 1 and 2 habitats from the Candidate Conservation Agreements with Assurances.
ADAPTATION STRATEGIES, OUTCOMES AND ACTIONS FOR THE SAGEBRUSH LANDSCAPE

The climate adaptation strategies for the sagebrush landscape are presented below in both table format and Results Chains. These strategies incorporate all the information gathered over the course of this project, e.g., climate scenarios, social response to interviews and narrative scenarios, ecological response models, social-ecological response models, and identification of interventions. See Figures 4-6 for diagrams or Results Chains describing outcomes and actions for each of the three adaptation strategies.

Three Priority Adaptation Strategies for the Sagebrush Landscape

<table>
<thead>
<tr>
<th>Adaptation strategy</th>
<th>Bio-climatic zones*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify and Protect Refugia (persistent areas)</td>
<td>Persistent and Threatened</td>
</tr>
<tr>
<td>Identify and manage the areas that are most likely to</td>
<td></td>
</tr>
<tr>
<td>persist under our future climate. Conservation,</td>
<td>Persistent areas are the “refugia” or areas that are</td>
</tr>
<tr>
<td>management, and restoration for the sagebrush landscape</td>
<td>Threatened areas may be able to survive changes, but</td>
</tr>
<tr>
<td>are much more likely to succeed within a climate</td>
<td>future climate is marginal and may hinder</td>
</tr>
<tr>
<td>refugia.</td>
<td>regeneration of sagebrush.</td>
</tr>
<tr>
<td>Proactive Treatment for Resilience</td>
<td></td>
</tr>
<tr>
<td>This strategy allows the development of treatment/</td>
<td></td>
</tr>
<tr>
<td>restoration plans that will improve the resiliency of</td>
<td></td>
</tr>
<tr>
<td>the sagebrush landscape, especially within those areas</td>
<td></td>
</tr>
<tr>
<td>that are likely to be persistent.</td>
<td></td>
</tr>
<tr>
<td>Assist and Allow Transformation</td>
<td>Lost and Emergent</td>
</tr>
<tr>
<td>It is important to recognize that transformation is</td>
<td></td>
</tr>
<tr>
<td>inevitable in vulnerable areas and rather than resist</td>
<td>Lost areas are where the future climate is highly</td>
</tr>
<tr>
<td>this change, change can be accepted and, perhaps, assisted or</td>
<td>unlikely to support sagebrush shrublands and the area</td>
</tr>
<tr>
<td>supported.</td>
<td>is most likely to transform into a grassland or some</td>
</tr>
<tr>
<td></td>
<td>non-sagebrush</td>
</tr>
<tr>
<td></td>
<td>community once a large disturbance removes sagebrush.</td>
</tr>
<tr>
<td></td>
<td>Emergent areas are where the future climate is likely</td>
</tr>
<tr>
<td></td>
<td>to support sagebrush habitat, but the area is not</td>
</tr>
<tr>
<td></td>
<td>currently dominated by sagebrush.</td>
</tr>
</tbody>
</table>

* From Jim Worrall (USFS).
Strategy 1: Identify and Protect Persistent Ecosystems

Desired Outcomes (Climate impacts reduced and condition improved)
Protect, maintain and enhance large interconnected, naturally functioning and resilient sagebrush landscapes across all jurisdictional boundaries that support stable or increasing viable populations of sagebrush obligate species, livelihoods and ecosystem services.

Ultimately we want to maintain a functional sagebrush landscape that supports ranching and other land-based livelihoods.

Intermediate outcomes
Actions to achieve outcome

Below are listed the intermediate outcomes (results) and key actions needed to achieve the desired outcomes.

- Climate and biophysical attributes identified that characterize sagebrush persistent areas for the 3 climate scenarios and mapped
 - Map climate and biophysical attributes, including non-climate stressors, to identify persistent areas
 - Conduct assessments to confirm persistent areas
 - Identify mountain shrub patches for persistent areas

- Linkages identified between persistent areas that support sagebrush ecosystems and viable population of Gunnison sage-grouse and other important wildlife species
 - Create map of potential persistent areas and linkages
 - Wildlife and vegetation monitoring conducted to ensure persistence
 - Build on Habitat Prioritization Tool of the Gunnison Basin Sage-grouse Strategic Committee

Persistent ecosystems are refugia that are likely to support sagebrush shrublands into the future.

At this point, two parallel outcome paths are needed. The first path leads to refugia being protected:

- Outreach plan implemented with community and stakeholders to protect persistent areas
 - Define, develop and implement an outreach plan that involves community and stakeholders
 - Identify key stakeholders, e.g., planning commission, realtors, livestock associations, grouse strategic committee, recreationists, other users of the landscape
 - Determine how to engage/involve key stakeholders

- Community prioritizes sagebrush persistent areas and linkages
 - Raise funding for land protection

- Cross-boundary coordination created with stakeholders
 - Develop consistency in management across agency boundaries

- Private land protected that equals X% of persistent areas and linkages
 - Raise funds for land and water rights protection

- Protected lands contribute to the maintenance of ranching and other land-based livelihoods and water rights
The second outcome path leads to improved condition of sagebrush landscape:

► Technical skills developed
 ◇ Technical trainings and workshops for students, landowners and land managers that increase awareness about climate science, climate impacts, strategies, refugia and linkages
 ◇ Engage broader community to define landscape monitoring

► Management targeted on public and private lands within persistent areas and linkages create more resilient sagebrush system
 ◇ Identify indicators and monitor the restoration success and condition of persistent areas to determine if refugia are working
 ◇ Raise funding for management
 ◇ Maintain mountain shrub communities within persistent areas

► Fragmentation and degradation of persistent areas and linkages reduced and prevented
 ◦ Improve the water holding capacity of soils

Why this Strategy is Important
Persistent ecosystems, i.e., refugia, are areas likely to support the sagebrush landscape into the future. This strategy is important as it is easier to maintain existing functioning systems than to restore systems. The scale of linkage zones may vary depending on the species, e.g., large for elk and deer, smaller for Gunnison sage-grouse, and species genetics. How you manage the land depends on the targets and objectives of the linkages. The refugia sites are likely to maintain a suite of ecosystem services that will benefit human communities, e.g., livestock grazing, snow retention, flood mitigation, recreation, hunting, etc.

Challenges to Implementation
The key challenges to implementing this strategy are: 1) certainty of water supply during a long-term drought; 2) the term refugia could be a barrier, so describe as persistent area, functional habitat, or resilient area that maintains continuity and function, able to withstand climatic changes; 3) not understanding all the values of different stakeholders – need to make connection with them; 4) funding to identify refugia and keep this effort moving forward as land protection is expensive; 5) maintaining momentum, continuity, and institutional knowledge; 5) incorporating new stressors; 6) communicating with stakeholders on the need and importance of these areas; and 7) confidence in precision of spatial attributes.

Opportunities for Successful Implementation
Opportunities for successful implementation of this strategy include: 1) work with landowners to define livelihood values and benefits of refugia, understand connections for implementation; 2) incorporate this strategy into the FWS recovery plan for the Gunnison sage-grouse; 3) institutionalize the strategy by incorporating into agency plans, standards and guidelines, and county land use planning; 4) take climate projections and incorporate layers into the Gunnison Basin Sage-grouse Strategic Committee’s Habitat Prioritization Tool (HPT) to inform priorities; 5) form an entity to work on capacity, resources and funding to implement this strategy (similar to Great Basin Consortium); 6) bring along the next generation to champion this work; and 7) incorporate this climate work into existing models for sage-grouse and habitat.
Figure 4. Results chain describing intermediate outcomes and actions for the **identify and protect persistent areas** strategy for the sagebrush landscape.
Strategy 2. Proactive Treatment for Resilience

Desired Outcomes (Climate impacts reduced and condition improved)

Enhance resiliency of the sagebrush landscape to climate change by maintaining ecological processes, restoring and/or improving the condition of the system to support a variety of wildlife species and ecosystem services, including livestock grazing and recreation.

► Intermediate outcomes ◇ Actions to achieve outcome

Below are listed the intermediate outcomes (results) and key actions needed to achieve the desired outcomes.

Multiple parallel interconnected outcome paths are needed for success. In the short term, rare species habitat may need to be managed until sufficient habitat is available in areas that will be appropriate under a future climate.

► Sagebrush maintained in high priority areas threatened by non-climate stressors in the short term to maintain Gunnison sage-grouse habitat
 ◇ Control juniper where it is encroaching
 ◇ Protect priority areas from catastrophic fire

An interconnected pathway leads through coordinated management:
 ► Public educated about the importance of a resilient landscape and prepared for changes
 ◇ Learn and adapt from changes
 ► Coordinated assessment and monitoring leading to prioritized management
 ◇ Prioritize where to proactively treat for resilience by identifying weak links in the sagebrush landscape to help prioritize treatments
 ◇ Reduce fragmentation to improve resilience
 ► Gene flow facilitated from lower to higher elevation sagebrush within the Basin
 ◇ Transfer pollen up in elevation
 ◇ Develop climate smart seed mixes
 ◇ Move lower elevation forbs and sagebrush to higher elevation
 ◇ Research species, soil micro-biology and how to move species up in elevation
 ► Best management practices adopted to facilitate resilience
 ◇ Research whether basin big sagebrush will move into the Basin
 ◇ Understand hybrid and subspecies response to drought
 ◇ Thin sagebrush through mechanical and herbicide treatments (only in carefully selected areas)
Monitor and share treatment success basin-wide
Adaptive grazing strategies to maintain or improve productivity
Develop BMPs to address fragmentation

One pathway relates to invasive species management:
► Invasive species and unwanted native species reduced
 ❖ Mechanical treatments of juniper
 ❖ Weed treatments
► Basin-wide coordinated weed management approach created and implemented
 ❖ Coordinated mapping, monitoring and treatment of cheatgrass and other priority weed species
► Non-native grasslands converted to native perennial grasslands in priority areas
 ❖ Research to determine how to convert
 ❖ Increase soil organic matter

After initial outcomes, one pathway is related to ranching and recreation livelihoods:
► Grazing capacity increase for livestock and wildlife
 ❖ Develop drought management plans
 ❖ Develop adaptive coordinated management approach across landownerships
 ❖ Utilize grass bank concept
 ❖ Allow vacant allotments
 ❖ Monitor effect of grazing actions on sagebrush
► Ranching and recreation livelihoods maintained
 ❖ Understand number of permittees within and outside Basin

Another pathway is related to soil and water processes and erosion:
► Land uses that negatively impact hydrologic regime improved or stopped
 ❖ Identify land uses that impact hydrology
 ❖ Manage shrub communities as natural snow fences
 ❖ Prioritize improvement of roads that disrupt natural runoff patterns and dry out sagebrush landscapes and meadows.
► Erosion reduced and soil health (moisture and carbon storage) improved to maintain resilient communities
 ❖ Install rock structures, plug and spreads and/or log structures to reduce erosion and restore mesic areas
 ❖ Establish a carbon bank to encourage people to maintain healthy soils, reduce erosion

Many pathways flow through this outcome. This vegetation condition is related to many aspects of resilience and contribute to ranching livelihoods and soil health.
► Vegetative cover and native plant species diversity maintained or improved
 ❖ Create demonstration projects
 ❖ Maintain mountain shrub communities within persistent areas
 ❖ Increase pollinators in persistent areas
Why this Strategy is Important

This strategy, when coupled with the refugia strategy, leads to a well-maintained and resilient sagebrush landscape that provides the ecosystem services for human and natural communities. It is a critical strategy for promoting the capacity of the system to withstand change, retain vital characteristics and ecosystem services, and for reducing the impacts from extended droughts and altered species composition. It is especially important as it relates to non-native weeds, e.g., cheatgrass.

Challenges to Implementation

The key challenges to implementing this strategy are: 1) risk of very large fires that exceed capacity to control them; 2) ability to respond to large disturbance, e.g., collecting enough native seed for restoration after a big disturbance, hydrophobic soils; 3) existing BLM policies not allowing grass banks in range allotments; 4) imposed grazing reductions on public lands may shift increasing impacts to private lands especially during drought; 5) knowing when to change management practices versus waiting for better methods to be developed; 6) weighing benefits of removing juniper versus weed problems juniper control may cause; 7) knowing the right treatment, and when, where, and how to conduct treatments to avoid maladaptation; 8) funding to identify and implement appropriate treatments; 9) lack of public awareness of climate change; and 10) weed management and follow-up treatment of increasing weeds, e.g., perennial pepperweed, wormwood, Canada thistle, yellow toadflax, and cheatgrass.

Opportunities for Successful Implementation

Opportunities for successful implementation of this strategy are: 1) to develop climate-smart seed mixes to prepare for big disturbances, e.g., fire or drought; 2) common values with landowners and agency staff wanting to identify ways to improve habitat and build a more resilient landscape in the face of drought, e.g., wet meadow restoration project; 3) to develop a network of places for ranchers to move their livestock if they have to move off of public allotments because of drought or fire; 4) USFS and BLM could allow grass banks (this has been done in other areas); 5) to work with decision makers on grazing plans; 6) to treat cheatgrass along roads and other pathways to keep it from spreading into the whole landscape; and 7) to coordinate across land ownership and management boundaries to achieve objectives.
Figure 5. Results chain describing outcomes and actions for the proactive treatment for resilience strategy for the sagebrush landscape.
Strategy 3: Assist and Allow Transformation within the Current and Future Sagebrush Landscape

Desired Outcomes (Climate impacts reduced and condition improved)

Assist and allow transformation to occur within future climate “lost” and “emergent” zones.

Ultimately we want to maintain a functional landscape that supports ranching and other land-based livelihoods, recognizing that future climates may not support the current flora and fauna.

Intermediate outcomes ◇ Actions to achieve outcome

Below are listed the intermediate outcomes (results) and actions that may be needed to achieve the desired outcomes.

Multiple parallel interconnected outcome paths are needed for success with many options because different actions may be effective in different elevations or zones (lost or emergent) as well as the experimental nature of this strategy.

One path relates to research and outreach:

► Gene flow facilitated from lower to higher elevation (Emergent Zone)

◇ Research species, soil microbiology, and which species are likely to move up in elevation using a common garden

◇ Identify warm refugia (“islands of existing sagebrush within a higher elevation band)

◇ Move lower elevation forbs and sage to higher elevation

◇ Transfer pollen up in elevation

◇ Amend agency policies to allow new native plant materials

► Public educated and prepared for changes in the landscape and the need to assist and allow transformation

◇ Learn and adapt to changes, sharing new information with the public

◇ Involve public to obtain buy-in for need, e.g., if we do nothing, cheatgrass will dominate

Transformation is inevitable and will happen primarily in two zones: a lost zone where climate is unlikely to favor sagebrush regeneration, and an emergent zone, where sagebrush does not currently occur, but future climate is likely to favor sagebrush. In the lost zones, we should prepare for a new ecotype, especially following a major disturbance. In the emergent zones, we should accept or even encourage “sagebrush invasion” especially in areas adjacent to large refugia. Sagebrush is already moving into upper elevations. Most of the outcomes are under assist transformation. Because there is uncertainty around where and when transformation may occur, we recommend treating this strategy as experimental with significant research and monitoring. See Appendix E for map of bio-climatic zones.
Best management practices adopted to facilitate resilience, transformation and reduce fragmentation (Lost Zone)
- Research whether basin big sagebrush will move into Basin
- Develop climate-smart seed mixes of native perennials
- Understand hybrid and subspecies responses to drought
- Thin sagebrush through mechanical and herbicide treatments in areas that are likely to have unsuitable climate
- Adaptive grazing management
- Research what pollinators are most important in sagebrush ecosystems

Warm refugia within the current Wyoming sagebrush landscape supporting grasses and forbs adapted to a hotter and drier climate are conserved in case of a catastrophic die-off (Lost Zone)
- Identify warm refugia and protect them as a seed source (example would be desert grassland island within a sagebrush landscape)
- Allow and encourage expansion of these areas
- Encourage pollinators in warm refugia

In the lost zone, both passive and active actions may be needed to ensure a native community replaces sagebrush shrublands:

Native grasslands and shrublands allowed to expand as sagebrush dies (Lost Zone)
- Identify areas that are likely to convert
- Manage these areas for native grasslands or shrublands

Treatments lead to increased sagebrush in areas where regeneration not naturally occurring
- Understand sagebrush response to treatments
- Transplant sagebrush in priority areas

Invasive species and unwanted native species reduced (Lost Zone)
- Develop comprehensive cheatgrass strategy
- Identify early adopters of new control methods
- Research new control methods
- Weed treatments including bio-controls
- Mechanical treatments

Numerous outcomes lead to the following outcome path:

Vegetative cover and native plant species diversity maintained or improved (Lost and Emergent Zone)
- Modify land health assessments to take climate change into account
- Create demonstration projects
- Encourage pollinators
- Learn and adapt from changes

Soil health (soil moisture and soil carbon storage) improved
- Reduce soil erosion

In the emergent zone, active actions may be needed to ensure transformation happens quickly enough for sagebrush obligates to have habitat when needed. In other areas, passive actions may be enough:

In upper elevation, sagebrush expanded through forest cutting in high priority areas (Emergent Zone)
- Map and monitor dying aspen
- Treat priority upper elevation areas where Douglas fir and aspen are dying
- Native plant transformations within sagebrush landscape allowed to occur (Emergent Zone)
- Allow sagebrush and lower elevation species to move up in elevation within sagebrush landscape

Direct actions may be needed to maintain ranching livelihoods in the face of climate change:
- Maintain agricultural water rights

Why this Strategy is Important
This strategy is focused on emergent and lost zones of the sagebrush landscape. It is our only strategy that accepts and embraces major changes. These major changes are more likely to occur in the low-elevation areas that are currently very dry sites and at high elevations where sagebrush can move upwards. It is important to pay special attention to rare plant populations and what can be done to protect them as they may have no place to go; there may be specific rare plant areas where we research, monitor, adapt, e.g., the Denver Botanic Garden collects seed and plants seeds where appropriate. Experimental design and monitoring are needed early on for implementing this strategy and adapting management practices.

Challenges to Implementation
The key challenges to implementing this strategy are: 1) agency policies regarding planting seeds collected from outside the basin; 2) lack of public understanding and awareness about the impacts of climate change, and the need to act; 3) losing sagebrush may affect the Candidate Conservation Agreement guidelines; 4) accepting sagebrush “invasion” into the emergent zones and accepting “sagebrush loss” in the low elevation dry sites; and 5) confidence in precision on which areas are most likely to be lost and the rate of the transformations.

Opportunities for Successful Implementation
Key opportunities for successful implementation of this strategy are: 1) to develop a climate-smart seed mix, e.g., change the proportion of cool and warm season species in seed mixes or add warm season species into seed mixes, especially at lower elevations; 2) to review and amend the agency policies for native plant materials, especially the USFS as they begin Forest Plan revision; 3) for research and monitoring, e.g., test which seeds would do better; and 4) to implement adaptive grazing management.
Figure 6. Results chain describing outcomes and actions for the *assist and allow* transformation strategy for the sagebrush landscape.
OVERARCHING CHALLENGES AND OPPORTUNITIES FOR APPLICATION OF THE THREE CLIMATE ADAPTATION STRATEGIES

At the final workshop in April 2016, participants articulated overarching challenges to implementing the three climate adaptation strategies and the use/application of workshop results, summarized below.

Challenges/Barriers

1. Human use, e.g., housing development, as population increases in Colorado and beyond
2. Acceptance by some decision-makers and users of the reality of climate change and the need to act.
3. Agency capacity and funding to implement the strategies and actions.
4. Funding to support proactive management when wildfire may get worse and most of the federal funding goes to fire-fighting.
5. Confidence regarding what locations may become unsuitable for sagebrush regeneration.
6. Demand for water for the Front Range (i.e., Front Range land developers purchasing Gunnison Basin water rights.

Opportunities to Use and Apply the Project Results

Participants were asked at the final Sagebrush Workshop in April, 2016: How can you take this information and use it? How are you going to use it?

1. Inform agency planning, actions and decisions:
 a. The GMUG National Forest has already been using the three climate scenarios and bioclimatic models developed for this project to help to consider shifts in vegetation and defining desired future vegetation conditions. There is opportunity to use the information generated from this project in the GMUG’s new Forest Plan Revision. This work can also inform standards and guidelines for the Gunnison sage-grouse. There are other projects that that this work could inform, e.g., grass-banking, wildlife management, cross-boundary data management, and grazing planning.
 b. The BLM can use this project and associated information in the Bighorn Sheep Environmental Impact Statement (EIS) Affected Environment and Cumulative Effects, as a lens for Land Health Assessments/NEPA documents, and Resource Management Plan Revision (upcoming).
 c. The NPS can use these tools and strategies for the North Rim landscape strategy for its pinyon-juniper and oak system fire management plan and fuels work, and in their resource stewardship strategy.
 d. The FWS can incorporate these results into the Gunnison sage-grouse recovery plan.
2. Restoration and management:
a. The NPS can use these tools for restoration projects for the North Rim landscape strategy-population of sage-grouse-sagebrush with oak mountain shrub and juniper. They can also incorporate climate scenarios in long-term planning and ongoing restoration projects and fire and fuels management.
b. Agencies can use reseeding as a tool in integrative weed management, and incorporate climate-smart seed mixes into restoration projects.
c. The USFS can use these results in implementing vegetation and restoration projects.

3. Monitoring and data sharing:
 a. Opportunity to include climate and social science information into regional and long-range monitoring, planning, training and discussion (not just ecological).
 b. WSCU could bring information generated by this project into their sagebrush obligate songbird monitoring project and a Gunnison Basin sagebrush atlas project.

4. Application of the framework at larger scales:
 a. NCCSC is taking the lessons learned from this project and applying to a BLM state-level project.
 b. There is an opportunity to adjust national, state and local policies, e.g., agency adoption of climate smart seed mixes, increasing coordination and management practices that incorporate climate change.

5. Research or data gaps:
 a. Conduct a basin-wide analysis of refugia and linkages; need to break down political boundaries (service first-interagency way to make it easier to fund projects).
 b. These results can be used by academia and research institutions to develop new research projects to address data gaps.
 c. Develop a basin-wide habitat management of juniper to determine if agencies are ready to treat juniper given current agency policies.

6. Funding:
 a. Pursue projects that benefit lands across boundaries, not just one land manager.

7. Invasive species and management:
 a. The county is in a good position to step up production of data and mapping of cheatgrass to use as baseline for research/monitoring.
 b. The NPS can use this project to help set priorities for weed management and control, with counties.

8. Vegetation seed mix:
 a. Because NPS is the lowest elevation land manager, its lands may be the first place to lose sagebrush and other species. Seed collection, modeling future vegetation, preparing climate-smart seed mixes, and engaging in cross-boundary science and research should be a high priority.
Next Steps

Refining the Framework:

1. Develop a streamlined template of the framework that can be applied to other conservation landscapes in and beyond the Basin.
2. Scale-up lessons learned regarding how to integrate social, ecological and climate science and share the model with others conducting similar projects.

Strategy Implementation:

1. Further develop the strategies/actions and develop an implementation plan, particularly for the assist and allow transformation strategy to help clarify desired outcomes and audience.
2. Initiate the identify and protect refugia strategy and actions with stakeholders, managers and project team.
3. Apply and refine the planning framework to other targeted landscapes. Bring communities together around key topics, e.g., drought, fire and invasive species.
4. Implement the strategies/actions and develop a monitoring program to detect trends and progress towards goals and objectives.
5. Develop criteria to evaluate progress in implementing the strategies and evaluate progress (identify barriers to implementation).

Sharing Results:

1. Share project results with upper-level managers of key federal and state agencies, e.g., USFS, BLM, NRCS, and NPS.
2. Present and discuss results with a broader audience representing non-governmental stakeholders from the recreation, range, ranching, and fire sectors, non-profit organizations, and representatives from other towns, as well as governmental officials.
3. Develop an outreach plan for the project and key strategies.
4. Develop a high-level executive summary of the project to share with stakeholders and partners; share results broadly.
5. Develop a clearinghouse for sharing maps, data, charts, graphs, bio-climate models, and other products that is accessible to managers, participants and stakeholders.

Conclusions and Lessons Learned

The planning framework used for this project builds on earlier social-ecological vulnerability assessments. It consists of selecting social-ecological landscapes, developing climate scenarios, developing narrative scenarios and ecological response models, conducting interviews and focus groups, developing social-ecological response models, identifying impacts and interventions, and developing strategies and actions. The framework was applied with natural resource managers, researchers and other stakeholders to develop robust climate adaptation strategies for the sagebrush landscape in the Gunnison Basin.
The project team worked with the GCWG and other stakeholders to apply the planning framework to the sagebrush landscape in the Gunnison Basin. At the same time, another group of stakeholders focused on pinyon-juniper woodlands and seeps and springs in the San Juan Basin. The two groups ended up with similar themes of adaptation strategies: conserve climate refugia, proactively treat for resilience, and assist/allow transformation.

The adaptation strategies are based on three basic principles for different zones for the sagebrush landscape in the face of a changing climate: 1) work in sagebrush shrublands most likely to persist in the future, 2) focus on proactive treatment to build resilience in persistent sagebrush areas; and 3) assist and/or allow transformation in emergent and/or lost zones.

Important next steps include sharing results, further developing the strategies and actions, implementing actions and designing a monitoring program to track progress towards goals and objectives, evaluate the efficacy of strategies and actions, and adjust actions as needed.

This framework could be applied in other landscapes and inform on-the-ground work to prepare for a changing climate and associated impacts.

Lessons Learned

Climate Scenarios and Bio-Climatic Models
Utilizing three climate scenarios was useful in understanding the uncertainty associated with climate. Developing strategies for one climate scenario (Feast and Famine) first and then evaluating how well those strategies addressed the two other scenarios helped to streamline the process while effectively dealing with the breadth of potential climates. Many workshop participants commented about the utility of the bio-climatic models to help visualize geographical opportunities for implementing strategies. However, it is important to note that these are models and may not represent reality. One participant suggested the need for more consideration of extreme events in all scenarios, interventions and strategies.

Situation Analysis and Chain of Consequences Methods
Workshop participants suggested using a combination of both the Situation Analysis and the Chain of Consequences methods for identifying interventions. The Situation Analysis can be used first to understand the landscape context and explore a broad range of impacts, followed by the Chain of Consequences to drill down into more specific interventions. It is important to allow enough time to develop comprehensive chains and interventions, potentially up to one-half day per impact. Additional preparation may improve efficiency given the time constraints, e.g., having a draft list of primary consequences to react to and build from may have saved time at the workshop.

Opportunity to Compare Results developed by Different Groups
Different participant groups produced different results at the April, 2015 workshop using the two different methods, Situation Analyses and Chain of Consequences. While the primary consequences were similar among groups, the choice of which chains to further develop, chain length, and the focus on ecological versus socioeconomic consequences differed among groups. Some results
clearly reflected the composition of the group (e.g., groups with more social scientists explored more social and economic issues), thus it is important to recruit a diverse set of participants to workshops to ensure a balanced outcome that integrates both social and ecological perspectives.

Interviews and Focus Groups

The interviews and focus groups helped the team understand the natural resource managers and stakeholders making decisions about adaptation in this landscape, including how they might respond to local climate impacts, what they need to respond, and the decision-context within which they work. Further, this part of the social science research helped identify risk perceptions and key barriers to effective adaptation. These were critical insights that ensured that adaptation strategies addressed important risks and recognized barriers to be tackled in the future. Additionally, utilizing scenarios in the focus groups built knowledge of how decision-makers navigate uncertainty when planning for climate change and made uncertainty explicit in the decision-making process. Thus, while we learned from the focus groups that planning for a range of futures was particularly challenging, we integrated a range of futures into the steps that followed, building capacity to plan in the face of uncertainty.

In this project, climate science was integrated into social science research through the scenario-based focus groups, which built a dialogue between social, ecological, and climate processes that informed our overall understanding of the systems. Ultimately, engaging with decision-makers through in-depth interviews and scenario-based focus groups enabled the group to develop useable, relevant tools and products that are feasible within the current institutional, governance, management and regulatory context.

Results Chains

Workshop participants noted that walking through the *Results Chains* step by step, discussing gaps or redundancies, was useful in developing the strategies and stimulating discussion and refinement. The *Results Chains* provided a structure to develop actions, but due to time constraints we were not able to develop more detailed and measurable actions. Engaging participants to present the draft *Results Chains* of the strategies increased understanding and discussion. Including text with the diagram to describe the *Results Chain* was a useful way to communicate the strategies/actions.

Workshops

The workshops provided an opportunity for thought-provoking discussion, interaction and learning for an interdisciplinary group of stakeholders, managers, and academics with different perspectives. The process of discussing goals and outcomes with state and regional stakeholders enabled participants to put their work into the larger perspective. Participants noted the importance of providing all materials developed through this project for reference at each workshop. The workshops, held in Gunnison, provided a wonderful opportunity for professors and graduate students from WSCU to engage with natural resource managers and community stakeholders. After the earlier workshops, several participants commented that it would have been useful to have more diverse user groups, e.g., non-governmental stakeholders; the team worked to broaden representation at later workshops.
Connecting Social and Ecological Components

Connecting social and ecological components of the targeted landscape was a challenge. There are opportunities to improve the integration of social-ecological components. It matters who participates in the workshops. We recommend that social scientists and users across sectors (e.g., recreation, grazing permittees) participate in all meetings. It is important to clearly define and name the targeted landscape that includes both the ecological and social systems. For example, we called the target the sagebrush landscape, but we suggest that we use a term such as sagebrush and working rangelands landscape. Finally, a social and economic vulnerability analysis would be a nice addition to the vulnerability analysis. This would help tie the livelihoods, users and their economic value. For example, in ranching is a prime economic value; if sagebrush has a high vulnerability, it affects the livelihoods.

Approach and Duration

This project applied multiple methods to identify impacts of climate change on the sagebrush landscape and to develop social-ecological adaptation strategies, e.g., three climate scenarios, ecological response models, Chain of Consequences, Situation Analysis, interviews and focus groups, and Results Chains. This process took almost three years to implement. Application of different methods resulted in similar adaptation strategies. For example, the refugia strategy rose to the top across the different targeted landscapes. Thus, in the future, to increase efficiency in developing adaptation strategies for other landscapes or ecosystems, teams may utilize only one or two methods to develop robust strategies. Developing the products over a shorter timeframe might help with ensuring consistent participation at workshops.

REFERENCES

Clifford, K. 2016. Climate adaption under a range of scenarios: Natural resource manager focus groups in the Gunnison Basin. Geography Department, University of Colorado, Boulder, Colorado.

Assessment for the Gunnison Climate Working Group by The Nature Conservancy, Colorado Natural Heritage Program, Western Water Assessment, University of Colorado, Boulder, and University of Alaska, Fairbanks. Project of the Southwest Climate Change Initiative.

APPENDIX A. GLOSSARY

Adaptation
Climate change adaptation for natural systems is a management strategy that involves identifying, preparing for, and responding to expected climate changes to promote ecological resilience, maintain ecological function, and provide the necessary elements to support biodiversity and sustainable ecosystem services.

Adaptation Actions
Specific on-the-ground management or conservation actions associated with adaptation strategies that will strengthen the resistance and resilience of sites, habitats, and species under a changing climate. Actions designed specifically to address the impacts of climate change.

Example: Plant riparian vegetation along target streams in areas that have been denuded to provide stream shading and buffer floods.

Adaptation Strategies
Management efforts designed to help nature and people prepare for and adjust to climatic changes and associated impacts. Strategies are focused on reducing impacts of climate change on nature and people, reducing non-climate stressors, protect ecosystem features, ensure connectivity and restore ecosystem structure and function on a large scale.

In-depth strategies have nested actions and articulate what you are trying to do, how, when and where you will implement actions to meet goals and objectives. Ideally, the strategies are robust across different climate scenarios. They are not intended to be decision making, rather for informing decision-making.

Example of a high-level adaptation strategy for the Gunnison sage-grouse brood-rearing habitat: Retain water in most-vulnerable brood-rearing habitats through water management: restore wet meadows across the Gunnison Basin to build ecosystem resilience and help the Gunnison sage-grouse and other wildlife species adapt to drought and intense precipitation events associated with climate change.

Example: Shift the age class distribution of conifer forest in 10 locations across the basin, by planting diverse species of trees, followings best practices.

Adaptation Target
A feature (livelihood, species, ecological system, or ecological process) of concern that sites at the intersection of climate, social and ecological systems (adapted from Cross et al. 2012).

Chain of Consequences
Identifies the potential short- and long-term environmental, social, and economic cascading consequences of an event or disturbance, and determines intervention points. Methods developed by the Department of the Interior (US Geological Survey). Method used at the April 2015 climate adaptation workshop.
Climate Scenarios
To aid in decision-making in the face of uncertainty, climate scientist Imtiaz Rangwala (PSD/NOAA; WWA/CIRES, University of Colorado) developed three climate change scenarios for southwestern Colorado based on a range of temperature and precipitation projections by 2035 from 72 global climate models that considered 2 RCP-representative concentration pathways (8.5 and 4.5). These scenarios represent three plausible but divergent future climate pathways for southwestern Colorado during the 21st century (Rangwala, 2015).

Climate scenarios for this project are: 1) Hot and Dry, 2) Warm and Wet; and 3) Feast and Famine (moderately hot, no change in precipitation, increased climate variability).

Conservation Target
For the purposes of this project, a conservation target consists of a large-scale landscape, consisting of both natural and human systems, that is targeted for conservation and adaptation strategy development. The targeted landscapes for the Gunnison Basin include sagebrush shrublands and spruce-fir forests. Numerous animal species, plant species and human communities in the Gunnison Basin rely on functioning sagebrush and spruce-fir landscapes that are at risk of a changing climate.

The sagebrush shrubland landscape consists of a mosaic of ecosystems dominated by Wyoming big sagebrush (*Artemisia tridentata* ssp. *wyomingensis*) at the lower and drier elevations and mountain sagebrush (*Artemisia tridentata* ssp. *vaseyana*) at the wetter and upper elevations. Smaller patches of other ecosystems are scattered throughout the landscape including: montane grasslands, windswept low sagebrush, high elevation meadows, low-elevation aspen patches, low-elevation grasslands, wet meadows, and groundwater dependent wetlands. It is the core habitat for Gunnison sage-grouse and includes seasonal habitats as well as the lek grounds, nesting, and brood-rearing habitats. At the upper elevations, it is bounded by aspen or mixed-conifer stands. Characteristic animals include Brewer's sparrow, Sage sparrow, Sage thrasher, Green-tailed towhee, Gunnison Sage grouse, Gunnison's prairie dog, and Pronghorn. This landscape ranges in elevation from 7,500 ft. to 9,500 ft. and encompasses over 1/2 million acres within the Basin.

The spruce-fir landscape consists of a mosaic of ecosystems dominated by Engelmann spruce and subalpine fir, ranging from 10,000-12,500 ft. in elevation. The lower elevations often consist of dense stands of spruce-fir forest with smaller patches of aspen or lodgepole pine. At the upper elevations, it transitions into the alpine zone with a mosaic of willows, wetlands, and mesic or dry alpine meadows. Smaller patches of other ecosystems, e.g., wetlands and fens, are scattered throughout the landscape. Characteristic animals include Boreal Owl, Three-toed woodpecker, Gray Jay, Pine Grosbeak, Pine Marten, Snowshoe Hare, and Lynx. Characteristic animals include Boreal owl, Three-toed woodpecker, Gray jay, Pine grosbeak, Pine marten, and Lynx. This landscape supports White-tailed ptarmigan, marmots, pikas, and elk and is very important for numerous rare plants. It primarily ranges from approximately 10,000-12,500 ft. with very dense stands below 11,000 ft. At around 11,500 feet the dense stands transition into a patchy mosaic of trees, willows, wetlands, and mesic and dry alpine meadows - the subalpine zone. This landscape encompasses over 1/2 million acres within the Basin.
Ecological Response Models

Ecological response models, based on literature review and expert opinion, describe how the landscape operates and provides a context for evaluating potential impacts of different climate scenarios. Models help identify outside environmental influences or drivers, and show the relationships among the main contributing factors that drive one or more of the direct threats that, in turn, impact the landscape. The purpose of assessing the model under three different climate scenarios is to provide a foundation of scientific understanding and inform the development of robust social-ecological adaptation strategies in the face of an uncertain future.

Goal

Broad aspiration or overarching vision for focal features. Should be forward looking rather than retrospective.

Example: Maintain forest cover of sufficient structural and compositional complexity that it can sustain key ecosystem functions, particularly providing habitat for forest-dependent songbirds and other wildlife.

Intervention Points

Elements in the system that can be manipulated or influenced through management and/or conservation actions; *starting points for developing in-depth adaptation strategies, policies and actions*. For this project, interventions were identified through situation analyses and chain of consequences for the feast and famine scenario at the April 2015 workshop. Interventions were then evaluated to see how well they work for the other two scenarios at the November 2015 workshop.

Examples for managing stream flows for cold-water fish: withdrawals, snowpack management and riparian vegetation management.

Example for Gunnison sage-grouse identified at the 2009 Climate Adaptation Workshop is groundwater (water table levels) and vegetation management within brood-rearing habitat.

Linkages

Also known as corridors. Any space, usually linear in shape, that improves the ability of organisms to move among patches of their preferred habitat. What serves a corridor for one species may not serve as a corridor for another species. Corridors can be natural features of a landscape or can be created by humans. Connectivity is a measure of the ability of organisms to move among separate patches of suitable habitat and can be viewed at various spatial scales (Hilty et al. 2006)

Objectives

Specific, measurable aims towards achieving goals. Ideally, defines the what, when, why and where.

Examples: By 2035, increase abundance of historically dominate boreal conifers, e.g., white spruce, white pine, tamarack, by 5% with 80% confidence; Increase native fish populations to viable numbers, restore 1200 acres of salt marsh habitat with 90% confidence.
RCP – Representative Concentration Pathway
Representative concentration pathways (RCPs) are climate scenarios implemented in the IPCC Fifth Assessment Report. Each RCP (2.6, 4.5, 6.0, and 8.5) provides projections of atmospheric greenhouse gas concentrations over time, based on assumptions about economic activity, energy sources, population growth and other socio-economic factors. RCPs have generally replaced the emissions scenarios (A1, A2, B1, B2, etc.) used in previous climate projection efforts.

For each category of emissions, an RCP contains a set of starting values and the estimated emissions up to 2100 (the data also contain historic, real-world information). While socio-economic projections were drawn from the literature to develop the emission pathways, the database does not include socio-economic data.

Refugia
Physical environments that are less affected by climate change than other areas (e.g., due to geographic location) and are thus a “refuge” from climate change for organisms. Protection, management and restoration are much more likely to succeed if within a climate refugia.

Resilience
Traditionally, resilience refers to actions designed to improve the capacity of a system to return to desired conditions after disturbance, or to maintain some level of functionality in an altered state. In the adaptation literature, resilience is considered part of a continuum of strategies, from resistance, to resilience and transformation. Recently, the concept of resilience has been used more expansively to embrace the potential for continued functionality and self-organization in the process of ecological transitions. Managing for resilience can be considered a way to enhance the natural adaptive capacity of systems by increasing their ability to self-organize in response to change (Stein et al. 2014).

The NPS Director’s Order #100 (Resource Stewardship for the 21st Century) defines resilience as the ability to anticipate, prepare for, and adapt to changing conditions and withstand, respond to, and recover rapidly from disruptions. Resilience strategies may include managing for the persistence of current conditions, accommodating change, or managing towards desired new conditions. Resilience strategies may vary and desired conditions must be clearly identified (Department of Interior NPS, 2016).

Because the term has multiple meanings, it is important to clearly state the context in which it is being used, e.g., resilience of what (e.g., ecosystems, livelihoods), to what changes (floods, drought) and how much of what kinds of changes (in structure or function).

Example: Resilience of North Woods Forests to negative effects of warming, drying of forest vegetation; keep system a forest, prevent conversion to shrub/grassland, but accept changes in composition.

Resistance
The ability of an organism, population, community, or ecosystem to withstand a change or disturbance without significant loss of structure or function. From a management perspective,
resistance includes both (1) the concept of taking advantage of/boosting the inherent (biological) degree to which species can resist change and (2) manipulation of the physical environment to counteract/resist physical/biological change.

Results Chain
A diagram that depicts the assumed causal linkage between a strategy and desired outcomes needed to reduce climate impacts (and other threats) through a series of expected intermediate outcomes and actions (modified from Margoluis 2013). Results chains are important tools for helping teams clearly specify their theory of change behind the strategies/actions they are implementing. Results chains can help teams to make assumptions behind strategies/actions and develop relevant indicators to monitor and evaluate whether their actions will have the intended impact.

Situation Analysis
Identifies specific connections between people and nature and allows exploration and understanding of the political, socioeconomic, cultural, institutional and ecological context of a landscape. This analysis describes the current understanding of a project’s ecological status and trends, and the human context. It is used to identify intervention points for developing strategies. Methods were developed by the Conservation Measures Partnership and used at the April 2015 climate adaptation workshop.

Transformation
The expectation and acceptance that a conversion to a new ecosystem type is likely to occur, i.e., a transformation from one ecosystem type to a new ecosystem type. Transformation strategies support and facilitate system changes to an altered state based on a predicted future climate. The altered state is unlikely to support the climate processes necessary for regeneration of the dominant species for which the system is known.

Example: Due to a new climate, a low-elevation sagebrush stand is unlikely to support sagebrush and is likely to transform into a new ecosystem type such as a desert grassland or a grassland dominated by cheatgrass.

Example: A low-elevation montane aspen stand is killed due to a drought and mountain sagebrush moves into the area, and the climate no longer supports aspen regrowth.
APPENDIX B. WORKSHOP PARTICIPANTS (SAGEBRUSH LANDSCAPE)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>January 8, 2014</th>
<th>June 22 &/or November 20, 2014</th>
<th>April 22, 2015</th>
<th>February 23, 2016</th>
<th>April 13, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob Addington</td>
<td>TNC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gay Austin</td>
<td>BLM</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mike Babler</td>
<td>Consultant</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Kristen Barker</td>
<td>CPW</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcie Bidwell</td>
<td>MSI</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danguole Bockus</td>
<td>NPS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clayton BonDurant</td>
<td>CPW</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chris Bove</td>
<td>NRCS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrew Breibart</td>
<td>BLM</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark Brennan</td>
<td>FWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nina Burkardt</td>
<td>USGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esme Cadiente</td>
<td>MSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theresa Childers</td>
<td>NPS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Katie Clifford</td>
<td>CU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Cochran</td>
<td>GCO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonathan Coop</td>
<td>WSCU</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karin Decker</td>
<td>CNHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trevor Even</td>
<td>CSU-NCCSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russ Forest</td>
<td>GCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Gioia</td>
<td>WSCU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tom Grant</td>
<td>WSCU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee Grunau</td>
<td>CNHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark Hatcher</td>
<td>USFS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonathan Houck</td>
<td>GCO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol Howe</td>
<td>USFS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kevin Johnson</td>
<td>SRLCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merrill Kaufmann</td>
<td>Consultant</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrie Knapp</td>
<td>WSCU</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Kugel</td>
<td>UGRWCD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paige Lewis</td>
<td>TNC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kristen Ludwig</td>
<td>USGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat Magee</td>
<td>WSCU</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shannon McNeely</td>
<td>NCCSC</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sara Miller</td>
<td>USFS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name | Organization | January 8, 2014 | June 22 &/or November 20, 2014 | April 22, 2015 | February 23, 2016 | April 13, 2016
---|---|---|---|---|---|---
Jeff Morisette | NCCSC | X | | | | |
John Murphy | USFS | X | | X | | |
Jon Mugglestone | GCO | | X | | X | |
Julia Nave | WSCU | | X | X | X | X |
Betsy Neely | TNC | X | X | X | X | X |
Bruce Noble | NPS | | | X | | |
Chris Pague | TNC | | | | X | |
Suzie Parker | USFS | X | | | | |
Daniel Perez | USFS | | | | X | |
Imtiaz Rangwala | WWA/NOAA | X | X | X | X | X |
Renée Rondeau | CNHP | X | X | X | X | X |
Rudy Schuster | USGS | X | | | | |
Amy Seglund | CPW | X | | X | X | |
Nathan Seward | CPW | | X | X | X | X |
Terri Schulz | TNC | X | X | | | |
John Scott | NRCS retired | | X | | | |
George Sibley | UGRWCD | | | X | | |
Clay Speas | USFS | | X | | | |
Ken Stahlecker | NPS | X | | | | |
Brian St. George | BLM | X | | | | |
Teresa Stoeppler | USGS | X | | | X | |
Bill Travis | CU | | X | | | |
Matt Vasquez | USFS | X | X | X | X | X |
Liz With | NRCS | | X | | X | X |
Laurie Yung | UM | X | | | | |

List of abbreviations used to indicate participant agency affiliation

BLM | Bureau of Land Management
CBLT | Crested Butte Land Trust
CNHP | Colorado Natural Heritage Program
CPW | Colorado Parks and Wildlife
CSFS | Colorado State Forest Service
CSU | Colorado State University
CU | University of Colorado
MSI | Mountain Studies Institute
NCCSC | North Central Climate Science Center
NOAA | National Oceanic and Atmospheric Administration
RMBL | Rocky Mountain Biological Laboratory
TNC | The Nature Conservancy
UGRWCD | Upper Gunnison River Water Conservancy District
USFS | US Forest Service
USFS RMRS | US Forest Service Rocky Mountain Research Station

Appendices. Sagebrush Landscape: Upper Gunnison River Basin, Colorado 55
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM</td>
<td>University of Montana</td>
</tr>
<tr>
<td>USGS</td>
<td>US Geological Survey</td>
</tr>
<tr>
<td>WSCU</td>
<td>Western State Colorado University</td>
</tr>
<tr>
<td>WWA</td>
<td>Western Water Assessment</td>
</tr>
</tbody>
</table>
APPENDIX C. CLIMATE SCENARIOS

Figure C-1. Models selected for the three climate scenarios used in the project.
The following summary was compiled from three climate scenarios and a review of literature. The Hot and Dry scenario is from hadgem2-es.1.rcp85; the Moderately Hot and No Change in Precipitation is from cesm1-bgc.1.rcp85; and the Warm and Wet is from cnrm-cm5.1.rcp45. Imtiaz Rangwala, Western Water Assessment and NOAA.

<table>
<thead>
<tr>
<th></th>
<th>Hot/Dry</th>
<th>Moderately Hot/No Change in Precipitation</th>
<th>Warm/Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Annual temperature increases by 5°F; At lower elevations: summer days with temperature above 77°F (25°C) increases by 1 month, and nights with temperature above 68°F = 10</td>
<td>Annual temperature increases by 3°F; At lower elevations: summer days with temperature above 77°F (25°C) increases by 2 weeks, and nights with temperature above 68°F = 20</td>
<td>Annual temperature increases by 2°F; At lower elevations: summer days with temperature above 77°F (25°C) increases by 1 week</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Annual precipitation decreases by 10%; less frequent and more intense individual rain events; summer monsoon rains decrease by 20%</td>
<td>Annual precipitation does not change but much greater fluctuations year to year (leading to more frequent feast or famine conditions); El Niño of 1982/83 strength occurs every 7 years</td>
<td>Annual precipitation increases by 10%; more intense individual rain events; summer monsoon rains increase by 10%</td>
</tr>
<tr>
<td>Runoff</td>
<td>Runoff decreases by 20% and peak runoff occurs 3 weeks earlier</td>
<td>Runoff decreases by 10% and peak runoff occurs 2 weeks earlier</td>
<td>Runoff volume does not change but peak runoff earlier by 1 week</td>
</tr>
<tr>
<td>Heat Wave</td>
<td>Severe and long lasting; every summer is warmer compared to 2002 or 2012 (5°F above normal)</td>
<td>Hot summers like 2002 and 2012 occur once every 3 years</td>
<td>Hot summers like 2002 and 2012 occur once every decade</td>
</tr>
<tr>
<td>Drought</td>
<td>More frequent drought years like 2002/2012 - every 5 years</td>
<td>Drought years like 2002/2012 occur once every decade</td>
<td>No change in frequency but moderate increases in intensity; fewer cases of multi-year drought</td>
</tr>
<tr>
<td>Snowline</td>
<td>Snowline moves up by 1200ft</td>
<td>Snowline moves up by 900ft</td>
<td>Snowline moves up by 600ft</td>
</tr>
<tr>
<td>Wildfire</td>
<td>Fire season widens by 1 month; greater fire frequency (12x) and extent (16x) in high elevation forest</td>
<td>Fire risk during dry years is very high at all elevations b/c of large fuel build up from wet years; on average fire frequency increases 8x, and area burnt increases 11x</td>
<td>Increases in fire frequency (4x) and extent (6x)</td>
</tr>
<tr>
<td>Dust Storms</td>
<td>Extreme spring dust events like 2009 every other year; causing snowmelt and peak runoff to be six weeks earlier</td>
<td>Frequency of extreme dust events increases from current but tied to extreme dry years</td>
<td>Same as current</td>
</tr>
<tr>
<td>Growing Season</td>
<td>Increases by 3 weeks</td>
<td>Increases by 2 weeks</td>
<td>Increases by 1 week</td>
</tr>
</tbody>
</table>
Three Climate Scenarios for the Southwest Colorado by 2035: Summary & Hard Numbers

<table>
<thead>
<tr>
<th></th>
<th>Hot and Dry</th>
<th>Warm and Wet</th>
<th>Feast and Famine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sustained and longer duration drought: 2002-like drought occurs every 5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chronic summer-time dry conditions: Summer monsoons are significantly reduced (‐20%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chronic summer time heat waves: Every summer warmer compared to 2002 (5°F above normal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water availability does not change but climate is warmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timing of snowmelt, streamflow, growing season change but more moderate compared to other scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chronic flood risks because of increases in moisture and more heavy precipitation events</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No long-term droughts but more frequent and intermittent severe-drought conditions (2002 drought once every decade)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large year-to-year fluctuations that go from “hot and dry” to “warm and wet” conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doubling in the frequency of alternating extreme dry and wet conditions relative to present</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hot and Dry</th>
<th>Warm and Wet</th>
<th>Feast and Famine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual temperature increase (F)</td>
<td>5</td>
<td>>2</td>
<td>2.9</td>
</tr>
<tr>
<td>Winter temperature increase (F)</td>
<td>4.1</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Spring temperature increase (F)</td>
<td>3.8</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Summer temperature increase (F)</td>
<td>6</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Fall temperature increase (F)</td>
<td>5.3</td>
<td>2.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Annual precipitation (%)</td>
<td>decrease 10%</td>
<td>increase 10%</td>
<td>no change but large year to year variation</td>
</tr>
<tr>
<td>Winter precipitation (%)</td>
<td>19</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Spring precipitation (%)</td>
<td>-9</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Summer precipitation (%)</td>
<td>-19</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Fall precipitation (%)</td>
<td>-15</td>
<td>10</td>
<td>-9</td>
</tr>
<tr>
<td>Freezing level</td>
<td>shifts up by 1200 ft</td>
<td>shifts up by 600 ft</td>
<td>shifts up by 900 ft</td>
</tr>
<tr>
<td>Runoff</td>
<td>> 20% decrease</td>
<td>stays the same as baseline</td>
<td>10% decrease</td>
</tr>
<tr>
<td>Timing of peak runoff</td>
<td>earlier by 3 weeks</td>
<td>earlier by 1 week</td>
<td>earlier by 2 weeks</td>
</tr>
<tr>
<td>Summer monsoon</td>
<td>decrease by 20%</td>
<td>increase by 10%</td>
<td>large year to year fluctuation</td>
</tr>
<tr>
<td>Summer like 2002</td>
<td>every summer</td>
<td>every 10 years</td>
<td>every 3 years</td>
</tr>
<tr>
<td>Severe drought duration</td>
<td>1-5 years</td>
<td>1 year</td>
<td>1-2 years</td>
</tr>
<tr>
<td>2002/2012 Drought</td>
<td>every 5th year</td>
<td>every 15th year</td>
<td>every 10th year</td>
</tr>
<tr>
<td>Strong El Nino return frequency</td>
<td>no change</td>
<td>no change</td>
<td>doubles</td>
</tr>
</tbody>
</table>

(Source: Imtiaz Rangwala, Western Water Assessment & NOAA PSD, Boulder; Renee Rondeau, Colorado Natural Heritage Program)
Seasonal Temperature and Precipitation Graphs

Winter
- mean temperature
- avg minimum temperature
- avg maximum temperature
- mean precipitation

Summer
- mean temperature
- avg minimum temperature
- avg maximum temperature
- mean precipitation

Annual
- mean temperature
- avg minimum temperature
- avg maximum temperature
- mean precipitation

Growing season length
- Rainy days (>trace)
- Rainy days (>20m)
- Max # consecutive dry days
- Warm spell duration
- # Tropical nights (>68F)
- # Tropical nights (>68F) low elevation regions
- Summer days >77 F low elev
Difference in winter (Dec-Jan-Feb) temperatures compared to 1971-2000 normals.
Difference in winter (Dec-Jan-Feb) and summer (Jun-Jul-Aug) precipitation compared to 1971-2000 normals.
APPENDIX D: THREE NARRATIVE SCENARIOS

Scenario 1: Hot and Dry

In this scenario, annual temperature increases approximately 5°F by 2035. To put that in perspective, Gunnison’s temperature becomes similar to the current temperature of Ridgeway, CO. By 2035, every summer will be warmer than 2002 and 2012 – years when we experienced excessive heat waves. At elevations below 7,000 feet, for at least two weeks during the summer, nighttime lows will not dip below 68°F (a typical tropical night), and summer will expand by a month. Annual precipitation will decline by 10%, and the combined effect of warming and lower precipitation will result in nearly 45% decrease in annual runoff. There will be a large increase in the frequency of extreme drought years. Roughly every fifth year, we experience droughts similar to 2002 and 2012 (in these years, precipitation was 40% below average).

Fire: Not every year will be an exceptional fire season but average fire frequency, intensity, and size will increase. The average fire season will lengthen by one month and the average fire frequency will increase up to 12 times while the total area burned in any given year will increase 16 times. The largest burns will be in coniferous forests, including spruce-fir, lodgepole pine, mixed-conifer, and ponderosa pine. Once burned, these areas are likely to transform into aspen, shrublands, or grasslands. The growing season will increase by three weeks, however, with less precipitation the understory herbaceous growth (fine fuels) will decrease which may reduce fire risk in the sagebrush. If a fire occurs in the lower elevation sagebrush zone the site will transform into grassland or rabbitbrush/grassland rather than return to a sagebrush system. There is a good chance that the “new” grassland will be dominated by cheatgrass. Note that sagebrush requires at least 7.5 inches of annual precipitation, and the large water stress in this scenario will make it difficult for the low elevation sagebrush to regenerate.

Drought: In this scenario, Gunnison’s annual precipitation declines and becomes similar to the current precipitation of Del Norte. Spring snowpack will decline by 10% and spring temperatures will increase by 4°F. This combination of a reduced snowpack and warmer spring temperatures will reduce the available water during the growing season. Trees and shrubs (especially sagebrush) rely on winter and spring snows. The snowpack allows for deep soils to remain moist during the growing season, therefore a reduced snowpack associated with a warmer and drier spring will negatively impact vegetation with deep roots (most trees and shrubs). Summer precipitation will decrease by 20% and have a large negative impact on vegetation, especially shallow rooted plants (mostly grasses and forbs). Snowline shifts up by 1200 feet and could impact the lower elevations of the Crested Butte ski resort. In addition, the average timing of snowmelt will shift a full three weeks earlier from temperature increases and more frequent dust-on-snow events (which will occur every year). Higher than average peak spring flows followed by lower summer flows will reduce the amount of water available for fish, riparian vegetation, migratory birds, and grazing animals, especially during summer. Endangered fish would most likely suffer from lower in-stream flow and increased stream temperature. Less precipitation in winter and summer will significantly decrease surface water and shallow ground water. Seeps, springs, and mesic meadows associated
with shallow groundwater will decline and species composition will be greatly altered. We will likely see a shrub invasion into mesic meadows and a decline in nearby aspen stands.

Insects: Tree mortality due to insect and disease outbreaks will greatly increase with a hot and dry climate, more so than in any other scenario. The current spruce-bark beetle infestation will likely expand and cause significant mortality in the mature trees. Species that rely on mature spruce-fir forests, such as Lynx, Boreal owl, Snowshoe hare, and Pine marten, will decline due to lack of food and shelter. Aspen trees at lower elevations will experience die-back associated with increased temperatures and decreased soil moisture. However, aspen stands at upper elevations may increase as coniferous trees decline due to fire and beetle kill.

Scenario 2: Warm and Wet

In this scenario, annual temperature increases 2°F by 2035. To put this in perspective, temperatures in Gunnison will resemble current temperatures in Cimarron. **Summer will expand by a week.** **Annual precipitation will increase by 10%** (in terms of soil moisture and stream flows a 5% increase in precipitation is needed to offset a 2°F increase in temperature with its associated higher rate of evapotranspiration). Drought years, such as 2002, will occur every 15th year, similar to today’s frequency. However, the intensity and severity of droughts will increase because of higher temperatures.

Change: While the water stress from 2°F temperature increase will be offset by a 10% increase in precipitation, ecosystems will change in measurable ways. For example, the ratio of warm season to cool season grasses will change, and we could see declines in western wheat grass, needle and thread grass, while blue grama and galleta grass expand. The snowline will shift upwards by 600 feet. As a result, the current vegetation in the 8,500-9,000 feet elevation band will begin to shift from mixed conifer or aspen to ponderosa pine. Due to increased precipitation, overall runoff will increase by 10%, while warmer temperatures mean that peak runoff will occur a week earlier. In this scenario, heat waves similar to 2002 (5°F above normal) will occur once every decade. Fire risk in this scenario is the lowest of any scenario but fires will be present, and intermittent dry conditions may cause severe fire hazards because of high fuel loads. These high fuel loads are a result of increased winter, spring, and summer precipitation producing more foliage. A 2°F increase in temperature will increase the fire frequency up to 4 times and the annual area burned by 6 times.

Weeds: We will have greater than normal winter snowpack above 10,000 feet and spring, summer, and fall precipitation will increase at all elevations. The increase in year-round moisture coupled with a moderate increase in temperature will promote invasive species (more so than any other scenario). Current invasive species such as leafy spurge, knapweed, and yellow toadflax will expand into low to montane elevations and new invasive species such as Japanese brome or purple loosestrife will likely move into the area. Rangelands will become degraded by invasives, and knapweeds and leafy spurge expand into rangelands that have never had a serious weed problem. Further, invasive species will out-compete the native vegetation and create a high density of fine fuels for fires, especially at the lower elevations.
Water: We will still experience droughts; however, they will be less frequent than in the other scenarios. Disease and insect outbreaks are expected to be lower than the other scenarios, however, insect outbreaks will still increase, as the droughts that do occur will be more intense than the droughts experienced during the 20th century. When we do experience a beetle outbreak, the recovery time may be quicker than in the other scenarios. Seeps, springs, and other groundwater dependent wetlands will increase or experience very little change. There will be some drought years that impact low elevation wetlands, but for the most part, wetlands will benefit from the years of increased annual precipitation. Higher elevation wetlands will do exceptionally well and possibly expand due to the greater snowpack above 10,000 feet. Higher soil moisture will likely eliminate or reduce invasive species in wetlands.

Scenario 3: Feast or Famine

In this scenario, annual temperature will increase approximately 3°F by 2035. To put that in perspective, Crested Butte’s temperature will be similar to the current temperature of Lake City. Average annual precipitation does not change; however, we will experience larger year to year fluctuations in precipitation, with some very wet years and some intense drought years, as compared to our current climate. Winter precipitation will increase, but precipitation will decline in the other seasons. When droughts occur, they will be more intense than present but generally less than two years long. Once every decade we will experience a drought similar to the 2002 and 2012 droughts (years when precipitation was 40% below average).

Feast: The growing season will expand by 2 weeks and during wet years vegetation growth will be exceptional with trees, shrubs, and ground cover greatly increasing. The frequency of severe El Nino and La Nina events will double to an average of once every seven years. We experienced severe El Nino years in this region in 1982/83 and 1997/98 with annual precipitation at roughly 20% above average. Invasive species will do well under El Nino conditions but decline in La Nina conditions (drought years). The annual fire risk is lower in this scenario than the hot and dry scenario. Large fluctuations between wet and dry years will increase fuel growth during wet years. This means that when a fire does occur, the severity, intensity, and size could be very high, and in a bad fire year the average fire frequency will increase up to 8 times and the area burned will increase 11 times¹. Year to year, summer monsoons will be more variable than they are currently. Large spring floods will be more likely as earlier rain on snow events will cause abrupt snowmelt. Dust-on-snow events, coupled with warmer spring temperatures, will also increase the chance of spring flooding, especially during El Nino years. The largest flooding events will generally occur from heavy monsoon precipitation. During these floods, there will be severe erosion in small streams as water runs over banks and culverts.

Famine: Intense droughts will more frequently follow extreme wet years. Bark beetles will expand during these drought years, causing extensive conifer mortality. The difference between this scenario and the hot and dry scenario is that multi-year droughts will be less likely in this scenario, so bark beetle dieback may not be as severe as in the hot and dry scenario. It is important to note that most conifer forests can regenerate more easily following beetle outbreaks than fires because bark beetles do not kill the young trees. However, insect kill in mature trees will diminish seed
production. This reduction in seed crop will hurt the animals that rely on conifer seeds. In the event of a fire occurring after a beetle outbreak, tree regeneration is nearly impossible due to a lack of a nearby seed source and nurse plants. The large fires associated with drought years will result in younger forests, more open structure, more early successional species, and more invasive species. Large landscape scale disturbances, such as fire and insect outbreaks, will fragment coniferous forests and negatively impact Lynx, Snowshoe hares, Pine martens, and other species that rely on large intact functioning forests, while possibly being a benefit to those species that prosper from a more open forest canopy.

Seeps, springs, and other groundwater dependent wetlands will experience a moderate decline, especially below 8,500 feet, where spring precipitation will fall as rain rather than snow. Increased evapotranspiration, driven by higher temperatures, will reduce soil moisture and streamflow. Consequently, species that can handle drier soil conditions, for example sagebrush, shrubby cinquefoil, and rabbitbrush will flourish; invasive species such as cheatgrass and knapweed will likely increase, especially at the lower elevations. Juniper establishment in the sagebrush is likely during wet years that follow a drought year.
APPENDIX E. BIO-CLIMATIC ZONES

Figure E-1. Wyoming big sagebrush Hot/Dry
Figure E-2. Wyoming big sagebrush Moderately Hot
Figure E-3. Wyoming big sagebrush Warm/Wet
Figure E-4. Mountain big sagebrush Hot/Dry
Figure E-5. Mountain big sagebrush Moderately Hot

Mountain big sagebrush
(*Artemisia tridentata ssp. vaseyana*)

2035: Moderately Hot/No Change in Precipitation
(cesm1-bgc.1.rcp85)
Figure E-6. Mountain big sagebrush Warm/Wet (Artemisia tridentata ssp. vaseyana)
APPENDIX F. ECOLOGICAL RESPONSE MODELS

Figure F-1. Reference condition model for sagebrush landscape
Figure F-2. Ecological response model for the sagebrush landscape under the hot and dry scenario.
Figure F-3. Ecological response model for the sf landscape under the moderately hot (feast or famine) scenario.
Figure F-4. Ecological response model for the sagebrush landscape under the warm and wet scenario.
APPENDIX G. SOCIAL SCIENCE INTERVIEW AND FOCUS GROUP REPORTS

Final Interview Report
Climate Adaptation in the Gunnison Basin, Colorado:
Social dimensions and management concerns for the Spruce-Fir and Sagebrush Landscapes

November, 2015
Katherine Clifford
Southwest Colorado Social-Ecological Resilience Project
North Central Climate Science Center (NCCSC)
Geography Department
University of Colorado, Boulder

Introduction
Climate change is projected to have widespread impacts in the American West. The impacts move beyond “global warming” and temperature rises to include changes to complex relationships between climatic, ecological and social processes. Climate change can transform landscapes, both in how they function and in their aesthetics. It may alter a number of ecological characteristics such as distribution of plant and animal species, invasive species migration, snowpack, wildlife populations, insect and disease cycles, and fire regimes. Ecological impacts cascade into social impacts for the local communities, and even to far-flung communities that depend on the region’s resources. Westerners are grappling with how to respond to change, and important actors in this response are the public land agencies that manage large portions of the land and water.

Public lands are a critical resource and play a significant role in the Rocky Mountain West. Large portions of the West are managed by different federal and state agencies making their natural resource management decisions salient to human and ecological communities. Many livelihoods are tied to public lands in the West, and management of public lands spills over to adjacent private lands. Natural resource managers are not new to implementing large-scale prescriptions at various timescales or thinking about landscape change. Disturbances regularly occur and require management responses, but climate change may pose a greater challenge for natural resource management agencies. New mandates require managers to include climate change in their management, but it can be challenging to connect theory with practice.

This report is part of the Southwest Colorado Social-Ecological Resilience Project (SERC, a collaborative endeavor funded by the Department of Interior’s North Central Climate Science Center (NCCSC)\(^1\). The multifaceted research project aims to facilitate climate change adaptation that contributes to social-ecological resilience, ecosystem and species conservation, and sustainable human communities in southwestern Colorado., and brings together scientists, land managers, and key stakeholders in the San Juan and Gunnison Basins. The project team provided downscaled climate information, ecological response models, and tools for managers to develop strategies in anticipation of climate change.

\(^1\) Colorado Natural Heritage Program, The Nature Conservancy, Colorado State University, Mountain Studies Institute, University of Colorado, University of Montana, U.S. Geological Survey, Western Water Assessment and the Gunnison Climate Working Group.
Project Goal:

The research component of this project examines key social-ecological-climate vulnerabilities and adaptive capacities and the knowledge, institutional structures, and mechanisms that will enable adaptation in the context of uncertainty. We aim to provide tools and principles for decision-makers (both public and private natural resource managers) that will generate strategies and scientific knowledge to facilitate climate adaptation and enhance the resiliency of communities. A social-ecological approach was used to understand key interactions, including intersections between the social and biophysical environments. Specifically, this report focuses on adaptation planning for two important adaptation targets: the spruce-fir and the sagebrush landscapes.

The Gunnison Climate Working Group (GCWG), a collaborative group of community members representing land and water managers, ranchers, county officials, university scientists and other interested parties, selected the targeted landscapes. Spruce-fir and sagebrush landscapes will likely be affected by climate change, and projected impacts, community feedback on their importance, and other key criteria, motivated their selection as research targets. These two landscapes cover approximately one million acres within the Gunnison Basin, with the sagebrush occupying the lower elevations and the spruce-fir extending to higher elevations; the alpine environment was not captured in these two targets.

This report summarizes findings from interviews with key decision-makers, which were designed to provide the following inputs to the larger research project:

- gather information on current use, importance, and status of the targeted landscapes;
- provide detailed insight into current social and decision making context of the targets and approach to uncertainty, and
- identify human communities in the Gunnison Basin likely to be impacted by climate-induced changes to the targeted landscapes, and the nature of those impacts.

Methods and Case Site

Research was conducted between June and October 2014 in the Gunnison Basin on Colorado’s Western Slope. The social science fieldwork employed mixed methods with interviews and focus groups, but this report summarizes the findings of the interviews only. Complementary research was conducted by social scientists in the San Juan Basin as well as natural scientists in both sites to help build further understanding of integrated social-ecological systems.

Interviews were a critical method to understand how decision-makers approached climate change and the two targeted landscapes. Twenty-two in-depth, semi-structured interviews were conducted with public land managers and ranchers. Public land
managers accounted for 18 of the interviews and represented five different agencies (National Park Service, Bureau of Land Management, Forest Service, Natural Resource Conservation Service, Colorado Parks and Wildlife). The interviewees represented different levels within the agencies as well as different focal areas (i.e., wildlife, range, forestry, etc.). Additionally, three ranchers were interviewed largely because of their management of public lands (through grazing leases) and recognizing the critical role private lands play in the larger landscape.

Interviews focused on three themes and were structured around the two targeted landscapes. Interviews only included questions about one of the targeted landscapes so participants self-selected which landscape they were best equipped to discuss. The ranchers received a different interview guide tailored to their management decisions, experiences with the sagebrush landscape, and relationships with the permitting agencies.

Research Results

Key findings were extracted from the interviews through qualitative data analysis. All interviews and focus groups were audio recorded with informed consent and then transcribed verbatim. Interview transcripts were analyzed for cross-cutting themes and coded using NVivo software. A priori codes were established by the larger social science research team and shared between the San Juans and Gunnison case studies to promote comparison and cohesion between research sites. Emergent codes were added during the analysis to capture new themes and Gunnison-specific findings. Codes are words or word assemblages that signal themes, attitudes, policies, or other repetitive elements of peoples’ perceptions and attitudes about natural resources, their management, and climate change. These findings should be understood as insights into, and excerpts from, a complex fabric of social and ecological connections rather than an exhaustive analysis of the social-ecological dynamics in the Gunnison Basin. This report summarizes key themes that emerged in the interview transcripts and offers related quotations to give detail to specific responses that illustrate findings.

Targeted Landscapes:

Importance and Perception

Interviewees had a complex understanding of both targeted landscapes and understood them as systems rather than just particular plant species. Interconnections among species, between climate and ecology, and between people and the targets were described in interviews, revealing a highly detailed and complex understanding of the systems. Scientific and precise indicators and measurements were used to describe targets as well as personal experience and landscape observations.

Spruce-fir:

Both target landscapes played critical roles in the Basin and were the sites of important activities for the community. People in the Gunnison Basin value spruce-fir forests for ecological services and for the activities that take place within the system. Ecologically, spruce-fir is valued for its plant and wildlife communities and its ecosystem services. Spruce-fir provides habitat for a range of species, including habitat specialists with restricted ranges, threatened species such as the Canadian Lynx, and game species
such as elk and deer. Spruce-fir also contributes ecosystem services such as carbon storage, water storage, soil moisture, snowpack and snowmelt, and by how its physical nature alters local wind and weather patterns.

Spruce-fir contributes to the local culture and economy; however, its social importance is changing as a reflection of changing demographics and laws. Historically timber was a significant economic driver in the Basin and a critical component of management. Forest regulations and laws such as the Wilderness Act of 1964 and administrative policies such as the Roadless Area Conservation Rule ("Roadless Rule") of 2001 were discussed in interviews as major barriers to active management and timber development, and as driving the change in how spruce-fir was valued. In response to decreasing timber acreage, a number of timber mills shut down; currently Gunnison only has access to one remaining mill. Locals blamed new populations of amenity migrants, newcomers who move to an area for its recreational or natural resources, for decreasing timber harvests and altering spruce-fir’s value from production to aesthetics. This demographic shift is increasing the value of the spruce-fir landscape for recreation; the economy remains one tied to its natural resources, but it is shifting from an extractive economy to a tourism-based economy.

Tourism is becoming increasingly important to the local economy and relies heavily on the spruce-fir landscape. Heritage tourism centers on historic sites and on mining establishments. Interviewees explained that this was often overshadowed by recreation tourism, but was important, especially to communities such as Lake City. Interviewees felt that recreation-based tourism was experiencing significant growth and that most recreation occurred within the spruce-fir forests. Recreation activities include hiking, camping, fishing, rafting, hunting, resort and backcountry skiing, snowmobiling, photography, and mountain biking. Additionally, many discussed how big game species relied on spruce-fir for habitat, which provides a critical influx of funds for the community and wildlife projects as well as supports an activity central to the community culture. All of these activities are vulnerable to climate impacts to the spruce-fir, and interviewees worried about how this would impact the local economy. People cited the West Fork fire of 2013 in the San Juan Mountains, which according to locals had a marked impact on local recreation tourism (up to 70% decline during the fire according to interviewees). It was feared that Gunnison’s economy could take a similar hit due to a dramatic change in the spruce-fir landscape.

Sagebrush:

The value of sagebrush is also changing, but this was due to changes in perception rather than economic forces. Historically sagebrush was thought of as a nuisance and not considered an important ecological system. This gradually changed as a more integrated ecological view was adopted, and more recently as legal restrictions have thrust this system into the limelight. The recent federal listing of the Gunnison sage-grouse, which uses sagebrush shrublands as its primary habitat, has increased the visibility of sagebrush. At the time research was conducted, the Gunnison sage-grouse was only proposed for listing, but it has since been listed as “Threatened” by the US Fish and Wildlife under the Endangered Species Act. Lines blur between Gunnison sage-grouse and sagebrush, and they often are discussed interchangeably, with questions about sagebrush often answered in terms about sage-grouse. Very rarely was sage-grouse not discussed in relation to why
sagebrush was important to the Basin, and this was usually phrased as a product of legal regulations- and their implications- rather than the inherent or ecological values.

However, after sage-grouse topic was covered, a number of other factors emerged regarding sagebrush’s importance. It was discussed as especially important during the winter when the high-elevation systems were harder to access. Other plant and animal species use sagebrush, and it provides critical winter range to big game species such as deer and elk, which have significant economic importance. Even in the summer when recreation moves up in elevation to the spruce-fir system, sagebrush is used for a number of recreation activities such as hiking, camping, and fishing. Ranching was one of the most important activities occurring in the sagebrush. Interviewees commented on how critical the sagebrush was to grazing and how permittees were able to utilize sagebrush as transition range before higher elevation pastures opened up. The community valued its ranching roots, and even as tourism takes a greater hold on the economy, they felt that ranches were important in preventing landscape fragmentation and as well as to the community culture.

Climate Change:

Both spruce-fir and sagebrush landscapes were perceived as vulnerable to climate change and likely to experience significant impacts. Climate change impacts were compounded by social and ecological changes, and often intertwined in interviewee responses. The main difference between the targets was that changes were perceived on different timescales: current and anticipated changes.

Interviewees expressed that spruce-fir was already undergoing radical changes and that climate change impacts were not hypothetical with the spruce-fir system. Beetle infestations and altered fire regimes were largely agreed to have drastic impacts on the spruce-fir system and have potential to completely transform the landscape. People felt that this transformation had already begun with high rates of beetle-related mortality; then expected this to greatly alter the age class of the spruce-fir system, and this—along with climate change— would usher in a new fire regime. Both beetle and fires were discussed as natural disturbances that were exacerbated by climate drivers. Beetle populations grew with the warmer winters and fire season increased due to extended periods of fire weather.

These disturbances would act in tandem to greatly alter the spruce-fir system; interviewees thought that a landscape dominated by old growth spruce fir was going to be a relic of the past. Spruce-fir changes would usher in a new landscape and have cascading impacts for managers, increasing recreation hazards or decreasing habitat for certain species. Future generations would inherit a starkly different Basin that would be in early states of succession. Interviewees explained how they thought they wouldn’t see the current spruce-fir system again in their lifetime. An “awkward period” was expected, referring to the time between when the spruce-fir dies and aspen begin to colonize the area. These changes elicited concerns from managers because of increased hazards of falling trees and fire as well as the complexities of managing a system after a disturbance. These changes provoked different strategies from managers with some focused more on mitigation and others on assisting change and still others that planned on merely observing the changes.
Sagebrush, in contrast to spruce-fir, was described as vulnerable to future climate changes, but less vulnerable to current impacts. Drought was considered the greatest climate threat to sagebrush, and in particular to the water resources and springs that were critical to the sagebrush system. Current and past droughts were critical to people’s understandings of climate, but there was a long history of droughts on the landscape, so it was harder to tease climate change apart from variability. Interviewees used reference years to help them understand and interpret climate. Interviewees regularly cited key reference years, such as the droughts of 2012 and 2002, when discussing future impacts of climate. This suggests that conceptions of future hazards and climate are structured and bound by past experiences and extremes.

When discussing climate change impacts to the targeted landscapes, interviewees often referred to climate-related proxies, rather than to climate itself. Climate change vulnerability was discussed in terms of beetles and fire for spruce-fir, while drought and species loss were used to imply climate effects for sagebrush. Impacts and vulnerabilities were discussed and accepted, but not explicitly tied to the underlying driver (climate change on the whole). Localized climate processes are often easier for people to digest and integrate into their local knowledge of a place, but it is important to recognize which proxies are used for which targets, and the larger implications of such perceptions for design of useful climate information.

This focus on components and proxies is quite different from the way climate change is typically measured and presented. Traditional climate information includes projections about metrics such as precipitation and temperature, but these are not what are “felt” by local communities or fit into their understanding of climate vulnerability. Furthermore, climate information often focuses on means (monthly, yearly), but the ranges and extremes are more telling of a future climate and its impacts. This suggested that people are much more sensitive to impacts of climate changes, and tangible landscape processes, than to climate change as a whole. How people understand and perceive climate can help in the design of more useful climate information and support new approaches to communicating information.

Focus Issues:

The targeted landscapes are important to interviewees because of the activities that take place in those systems, rather than the inherent value of the targets themselves. The goal of this research project was to integrate the social analysis into the ecological and climate analysis to reflect the interdependent nature of these social-ecological systems, but it was challenging to elicit social dynamics with ecological targets. People felt a greater connection to the activities that took place in the targets rather than to the targets themselves. For example, focusing on an activity like grazing may capture a very similar landscape and system as the sagebrush landscape, but it centers on a set of values that are socially vulnerable and therefore salient to people. Discussions that remained focused on the target, rather than the related activity, address the ecological importance narrowly, but did not provide insight into the social importance. This suggests that targets designed around important activities rather than ecosystems may be more relevant to managers, users, communities, and the public.
Additionally, water resources emerged as an important issue in the Gunnison Basin that was not fully captured in the two targeted landscapes. Water often evoked greater threat and concern than either of the two terrestrial system targets. Target selection included feedback from the Gunnison community, but interview responses suggest that water resources are vulnerable and greatly influence both sagebrush and spruce-fir. Water also inculcates a strong social vulnerability and importance. Water resource vulnerabilities were locally expressed through their ecological impacts that could alter landscape systems and aesthetics, and through their social implications that could affect activities such as recreation and tourism (Blue Mesa reservoir, Crested Butte ski resort, etc.), grazing and municipal supplies. They were also discussed regionally as the community greatly feared how the needs of outside communities, perhaps also affected by climate change, would restrict their local water supplies. Threats such as calls on the river, new municipal water rights and trans-mountain diversions made the actions of outside communities salient to Gunnison.

Management and Engagement:

While land managers discussed potential impacts of climate change, almost all interviewees reported that climate change was not part of their larger, agency management plans. This was likely a product of the era they were created; most were decades old and were slated for revisions. While most of the long-term plans did not include climate change because of their age, the short term plans often did not include climate because of their scope. Interviewees reported it was difficult to include climate in short to mid-term decisions (5-10 years) because climate change is thought of on a longer scale, and shorter timeframes might detect climate variability rather than change.

Access to information, and the type of information, plays an important role in how land managers incorporate climate change into decisions. Interviewees were asked what type of information they needed to better integrate climate into management and where they would access such information. They discussed information needs, and while many were interested in more climate information, none of them felt completely uneducated about climate change. In fact, Gunnison land managers have developed strong knowledge networks that facilitated access to new science and better sharing of information between agencies. Many reported having resources and access to information within their

“That’s a tough question just because I’m not sure that the agency has come out and said “This is what the XYZ will be for our goals for spruce fir”, you know we talk about resistance and resilience and those kinds of things, but I don’t know that anyone’s come down upon high and said “our goal and our objectives will be this”, so I’d say no, [our goals aren’t realistic in the context of climate change]”

“Access to climate information, and the type of information, plays an important role in how land managers incorporate climate change into decisions. Interviewees were asked what type of information they needed to better integrate climate into management and where they would access such information. They discussed information needs, and while many were interested in more climate information, none of them felt completely uneducated about climate change. In fact, Gunnison land managers have developed strong knowledge networks that facilitated access to new science and better sharing of information between agencies. Many reported having resources and access to information within their

“The Forest Service has a climate change performance scorecard that each forest has to answer a series of 10 questions and we’ve been working on this for the 3rd year, by 2015 the agency wants every agency to say “yes” to over 70% of the questions. And the performance scorecard, part of that includes basic knowledge, providing training to the workforce, incorporating climate change into decisions, developing adaptive strategies, working in collaboration with public universities and research, and there’s a big chunk of sustainable operations involved”
Information Needs

- Understanding human behavior and social processes intertwined with resource management
- Strategies for relationship building
- More localized information in future climate and impact projections
- Sagebrush specific information
- Defining best available science
- Certainty of models outputs
- Recreation carrying capacity
- Forecasts on a range of time periods
- Trainings on how to use tools/models

agency, from outside agencies, and with non-governmental partners. Managers received science and new information that was digested and disseminated through agency research centers and universities, and they used connections across agency boundaries as well.

Interviewees felt that the Gunnison land management community was closer and better integrated than many of their counterparts elsewhere. They gave many examples of working with other agencies on a common goal and sharing information and project funding. While the Basin has historically had good interagency interactions, this also may be one byproduct that resulted from the threat of the sage-grouse listing. In response to legal consequences, the community created a number of cross-agency groups to focus on the sage-grouse issue, and this helped to build stronger relationships that otherwise may not have formed. While sage-grouse listing is perceived as a serious threat to the community, it may have built a greater capacity to respond to climate change through the stronger relationships and experiences with collaboration.

Relationships between the public and agency managers were not as well formed, and represent an opportunity for increased capacity. Many land managers discussed the challenge of communicating and engaging with the public as an obstacle to decision-making, and felt this was especially salient for decisions regarding climate change. None of the managers interviewed were skeptical of climate change, but they felt that public skepticism made it harder to get buy-in and public approval of their climate related management decisions. A lack of trust between agencies and local community members meant that interviewees felt that every decision was scrutinized, and often challenged, and that this took away from their capacity to effectively manage resources.

Capacity to address the social issues of resource management and manage the public’s use of resources was often discussed as more important than the science and management, and participants felt ill-prepared to effectively engage the public. Most of their training focused on the technical aspect of resource management, and many claimed that public land agencies select for people who didn’t want to have to work with people. These factors work together to make communication and trust-building a daunting task for managers, and many wanted strategies that could address that self-proclaimed deficiency. Yet, this was not observed in interview and focus groups, as most managers were competent communicators, despite the contrasting narrative. While managers claimed this deficiency, it may be more

“That trust component that social capacity is really important and you’ve got to understand human nature. You are, you are not a natural resource manager, you’re a human nature manager, and that’s the reality of it. So you know, from an organization like mine becomes a challenge because I’ve got some good technical experts who don’t necessarily have that skillset in negotiating political savvy, emotional [interactions]”
representative of agency discourse than practice. This sentiment was not limited to climate adaptation, but managers felt that adaptation would require stronger relationships with the public as compared with current management because the strategies to respond to this new problem would diverge from historic management policies.

Uncertainty and perception

A greater understanding about how people understand climate change can provide insight into their decisions and better guide the provision of climate information. Participants tended to perceive climate change through extremes and variability rather than shifts in mean conditions. This departs from how climate change is often understood, as a single trajectory of global warming. Interviewees expressed a nuanced understanding of climate change and future climate, which recognizes a range of effects and the challenge of predicting those effects. Specifically they discussed extremes and greater variability of climate, and how that would be increasingly difficult to plan for and manage.

The historic and future range of variability is understood and bounded by previous climate experiences. Interviewees discussed how the Basin already experienced significant climate variation and they expected climate change to make extremes more extreme. They regularly referenced extreme drought years (2002, 2012) and high precipitation years (1986, 2008). When impacts of climate were discussed, people often invoked reference years and conditions, speaking of “more 2002’s” or a greater oscillation between “2008’s” and “2012’s.” This both roots future projections in lived experiences making their impacts tangible, but also limits future possibilities to past experiences and makes it challenging to imagine beyond prior extremes.

Climate uncertainty elicits a range of responses from land managers, especially as it intersects with decision-making. Some interviewees felt a sense of dread and paralysis, others expressed a neutral curiosity about future systems, and still others expressed confidence. People were comfortable making decisions with climate uncertainty when it was framed as a disturbance. Managers regularly make decisions about disturbances that are steeped in uncertainty (fire, beetles, drought), and recognize that their understandings of future ecological conditions are only partial. To manage for disturbances they must try to create resiliency in the landscape and invest in protective efforts, but they cannot control large, landscape-scale disturbances. Often, they must respond quickly during or after disturbances. When climate change is viewed similarly, it fits within current management frameworks and managers’ skill sets. Framing climate change as a large-scale disturbance does not require managers to have certainty on the scope and scale of its impacts, but rather move forward in decision-making with recognition of uncertain future conditions.

> “I think the uncertainty around climate is no different than the uncertainty in any other resource we’ve managed.”

> “It’s the politics around climate that make it seem different and scary, but from any natural phenomena, or ecosystems stand point, it’s no different than the resource we’re dealing with, characterize the impacts, package the information and describe it.”
Framing climate impacts as a disturbance may be a strategy to aid managers, and one that works with their current management frameworks and approaches. Some managers are already framing climate impacts this way and more managers may benefit from this approach. It could translate climate from an unimaginable and unmanageable challenge into a type of issue they have confidence with and experience working on. A disturbance framing may combat the feelings of inexperience surrounding climate change and may help free it from the politics that also make it hard to engage with. Even those who were already framed climate as a disturbance were quick to acknowledge this was not a silver bullet and that management challenges exist with all disturbances.

Adaptation and Management

Land managers discussed different approaches about how to adapt to climate change and make decisions under uncertainty; however, they favored approaches that allowed them to focus on what was more certain within a range of uncertainties. Even managers who were comfortable with uncertainties favored a straightforward and defined management goal rather than one that was undefined and open-ended. Two, somewhat countervailing, themes emerged in their favored approaches: specific and set goals were needed for management, and processes with increased flexibility and re-evaluation were the strongest for managing under uncertainty.

Managing for a “range of future conditions” is often discussed as a strategy for climate adaptation decision-making, but interviewees did not respond well to the idea. There was a mix of reactions that ranged from excitement and support, to confusion, to resistance and critique. The non-supportive reactions were spurred by confusion about what a “range of future conditions” meant and frustration that it was not a practical management goal and could not readily be implemented. When asked about that approach, many were confused as to what it meant and asked for further definition. They were not familiar with the concept and furthermore were unsure how it translated into actual management prescriptions or how their agency would even support it. Others responded strongly against the notion. To some it was unrealistic and others misunderstood what it meant. The feasibility and practicality of planning for a range of future conditions was questioned, and to many it sounded like increased paperwork and a bureaucratic headache. Some were frustrated by the idea, stating that it was probably something that researchers came up with who were detached from management, or that it did not make sense and was going to be another burden added to their decision process. A minority did respond well to the idea, with some saying it would be a useful goal, to others suggesting that they already did this through use of historic range of variability and NEPA processes. These responses suggest that managing for a “range of future conditions” is not an accessible strategy to most managers and might conflict with conceptual frameworks of how to make decisions. Instead, one set goal was the favored management approach.

Managers wanted one clear management goal, even if that goal needed to be amended later. It was suggested that a useful approach to managing for a range of future
conditions was to consider all the decisions and then choose one goal that represented the middle ground between extremes. Even with uncertainty, managers preferred to set a clear goal, one that was measurable and that management strategies could be geared to, rather than have a range or an undefined goal. People did recognize that goals may prove to be unobtainable with such great uncertainty, but believed that adaptive management (regular re-evaluations of goals) could address that.

Different Responses to Managing for a Range of Future Conditions:

"Managing for a range of future conditions, I think we're not there yet, and I'm uncertain as to what the agency could do at this point to support it. I think this is frankly, a key area, and it'll come with the type of work [this project is] developing. How do you consider a range of climate scenarios in the future? How do you analyze [climate scenarios]? What are the potential impacts we can be looking at and considering?"

"That is absolutely true. We should try to manage for a range of future conditions out there and so I think part of that is trying to look at what do we think those range of conditions might be in the future."

"A range of future conditions, yeah I think we're kind of doing that now. That's a hard one."

"I've heard about it but I'm not sure how you manage for multiple outcomes at the same time. I mean to me it makes more sense to pick a path that makes sense based on what you know today, but be flexible enough that as you get more information, you can decide to change course. You know, it's like, for an example, you know, if you're trying to make a decision on where to go to dinner, you can't go to five different restaurants at the same time."

"I think that's the dumbest thing I've ever heard. Our agency in all, what would enable us to do that? Because you don't know what the situation is so, you're gonna try to manipulate the landscape in 10 different ways in case it hits any direction so you're going to have at least nine failures and nine damaged creations, if you will, so yeah, that's a really bad idea in my opinion."

"You have an end goal if you want to get to, know if you're directing towards for that or away for that, but managing for million different scenarios would only kind of quagmire you and this indecision, I don't know what to do."

Assist or Resist?

While most agreed that they would prefer to have one management goal, there were tensions over what approach it should take; should adaptation assist or resist climate impacts? Management efforts could work to maintain currently functioning systems and try to protect them and build resistance to change, or they could attempt to facilitate change. One example of this was on species ranges. Managers struggled with whether to use nurseries and management prescriptions to maintain diverse species and keep systems within their historic range. Some suggested that to best adapt to climate change, they should start to plant new species and assist in shifting ranges. This highlights the complexity of management under climate change: how to approach a changing system.

Adaptive management (AM) is a popular strategy for managing under uncertainty, but participants noted that a gap exists between theory and practice. AM requires flexibility to respond in a timely manner, flexibility that current financial
constraints, regulations (NEPA), and agency guidelines do not facilitate. Managers often cannot respond quickly to changes or disturbances and they worried this would become an increasing problem with climate adaptation. Furthermore, a critical component of AM is experimentation, which includes failures, but managers described a risk-adverse culture that did not tolerate failure. There was pressure from the public for the “right” management prescription and this translated into the agency promoting conservative management.

Managers need accurate and current baselines for adaptive management, but lack the necessary funding and capacity for consistent long-term monitoring. This is a significant challenge to implementing adaptive management and another gap between theory and practice. Monitoring projects rarely get funding, especially the long-term funding required to construct baselines and to understand the impact of management prescriptions. Permittees discussed this same gap in monitoring and baselines, and suggested it was an opportunity to utilize local knowledge. Ranchers spent significant time on their permits and built a deep, and long-term baseline knowledge of the system that they thought could be useful in light of the funding and capacity challenges for monitoring.

Barriers to Adaptation

While uncertainty about future climate presents challenges, a lack of information is not the most critical barrier to implementing adaptation strategies in the Gunnison Basin. Interviewees had experience and familiarity with climate science and strong networks to obtain additional knowledge (agency research branches, agency specialists, TNC, RMBL, WSCU). Many barriers exist within and outside of the agencies that may have a greater impact on implementing climate adaptation strategies than scientific uncertainty. All are important to recognize when designing adaptation strategies.

<table>
<thead>
<tr>
<th>Type:</th>
<th>Financial</th>
<th>Structural</th>
<th>Social</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Themes:</td>
<td>Insufficient budgets; restrictions on how funds can be used; lack of monitoring funding; depressed local economies; lack of professional development funding</td>
<td>Laws and regulations; diverse land ownership; cumbersome bureaucratic processes; lengthy planning processes; highly mobile agency employees; lack of staffing capacity; uncertainty about “best available science”</td>
<td>Special interest groups; public perception of the environment; challenges with public engagement and communication; overuse and maintenance of partnerships; policies that resulted in stakeholder fatigue or non-diverse community engagement; short-term memory of landscape change; lack of trust between agencies and the public; limited local control of resource management and decisions; skepticism of climate change</td>
<td>Scale of processes and interventions (often a mismatch); confusion about the best approach to change (resist or assist);</td>
</tr>
</tbody>
</table>
Adaptation barriers and challenges in the Gunnison Basin can be grouped into three main categories: financial, structural and social. Financial barriers are obvious, and related to availability, quantity and timing of funding. Structural barriers refer to issues that are part of a larger, often formal, system such as laws and governance, institutional guidelines and restrictions, and agency processes. Social barriers include interpersonal interactions, relationships between agencies and the public, and public beliefs.

Selected Barrier Quotes (from resource managers across agencies):

<table>
<thead>
<tr>
<th>Financial Barriers</th>
<th>Quotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theme Low budgets</td>
<td>“I would say it's a real challenge right now with the budgetary constraints and the kind of projections of what where we're going with budgets right now. The BLM, at least in my experience, does not have enough people and money to do what we're supposed to do, let alone what we'd like to do. So that's a struggle.”</td>
</tr>
<tr>
<td>Funding restrictions</td>
<td>“Money isn't always the issue, it's some of these fiscal constraints and caps, like I can only spend $25,000 on one contractor when I know he's qualified to do the work, you know. But I have $50,000 of work funds this year.”</td>
</tr>
<tr>
<td>Professional development funding</td>
<td>“We don't have funding to go to conferences; those are always good places too. Maybe not always to learn the information but definitely make contacts with people who have the information and find out what kind of research is happening, and that's something that the BLM and I think the other agencies too, are getting less and less support to send its people to conferences or even giving us the time to go to them. I mean, really, we're so strapped for time that I haven't been to a professional conference other than just taking annual leave and going on my own, for years.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural Barriers</th>
<th>Quotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theme Laws and government regulations</td>
<td>“Most of our district is Roadless or Wilderness, we can't manage that area. That's part of the issue, a lot of the areas we cannot actively manage because they're Roadless and wilderness and we have to obey that. To manage them we need roads but we simply don't have that.”</td>
</tr>
<tr>
<td>Red Tape</td>
<td>“It's you know, sadly, paperwork intensive as opposed to on the ground solutions. If we had money that we could quickly put on the ground we would achieve so much so quickly, but it's all paperwork, and a lot of laws require that. And some of that is internal.”</td>
</tr>
<tr>
<td>Highly mobile agency employees</td>
<td>“Very difficult to go from an entry-level position to a management position in one office, you're gonna have to transfer. I don't know if it's formal policy, but a lot of agencies it's informal policy. As far as providing a broad base of skills, and not becoming entrenched in an area that works but as far as being able to make good land management decisions, makes it difficult I think.”</td>
</tr>
<tr>
<td>“Best available science”</td>
<td>“You know, we make our decisions based on the best available science, and that's something we're required to do, at least at the Forest Planning level, but I think it actually carries forward into project levels, so we try to base our decisions on best available science. I think that oftentimes best available science is based on history that it is based on uncertainty.”</td>
</tr>
<tr>
<td>Theme</td>
<td>Quotation</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Special interest groups</td>
<td>“The land management agencies have to deal with special interest groups pushing, no matter what they decide, so they have some pressure no matter what the decision.”</td>
</tr>
<tr>
<td>Public perception of the environment</td>
<td>“Not targeting climate change because there’s a lot of skepticism up here, if you say "climate change" up here to some of these folks, you’re automatically a granola-crunching hippie who yeah drives a Subaru.”</td>
</tr>
<tr>
<td>Short-term memory of landscape change</td>
<td>“It's unprecedented in the memory of people... They think it's always been this way, people have a very hard time visualizing change so because we have limited space where things can be done, the management of spruce-fir is mostly going to be done from a public safety perspective.”</td>
</tr>
<tr>
<td>Relationships & lack of trust with the public</td>
<td>“So there's lots of challenges and then just the fact that people, there's a still of big distrust that the Forest Service that could possibly be good for the landscape. There's opposition to seeing any kind of management to be done. Consequently we have the Colorado Roadless Rule, which ties our hands for being able to respond to changes on the landscape. So lots of challenges. People move here because they see this beautiful landscape and "not in my backyard, I don't want to see anything happen".</td>
</tr>
<tr>
<td>Local control</td>
<td>“There seems to be a shift from trusting, they expect everybody in these positions has to have a huge amount of education, you know the requirements to get one of these jobs are very precise and overwhelming. And they're taking away that trust that [our agency] used to be a locally-managed. We trust our employees. Now everybody's kind of pulling back to "Our employees are not the smartest so let's give them the template they need to use."</td>
</tr>
</tbody>
</table>
KEY FINDINGS

Adaptive and flexible management:

- Adaptive Management (AM) is a popular strategy for managing under uncertainty, but a gap exists between theory and practice because managers do not have the flexibility to respond quickly or adequate baselines to evaluate management strategies.
- Interviewees did not respond well to the idea of managing for a “range of future conditions” because of confusion over what it meant and frustration over how to implement the strategy.

Uncertainty and Variability:

- Uncertainty elicits a range of responses from land managers from dread to curiosity to confidence; people were comfortable with future uncertainties when they were framed as disturbances.
- Climate change was understood through extremes and variability rather than a simple focus just on increasing temperatures.
- The historic and future range of variability is understood and bounded by previous climate experiences, with regular references to extreme drought years and high precipitation years.
- A lack of information is not the most critical barrier to implementing adaptation strategies in the Gunnison Basin.

Public Influences:

- Interviewees did not deny climate change, but saw public skepticism as a barrier to implementing climate adaptation.
- Recreation pressures (and conflicts) are growing in the Basin and this is compounding the challenges of climate change.

Capacity:

- The threat of an ESA listing for the Gunnison sage-grouse may have built community capacity for adapting to climate change.
- Capacity to integrate the human dimensions of natural resource management was often discussed as more important than the science and management, and participants felt ill prepared to effectively engage the public.
- Interviews highlighted a range of barriers for climate adaptation and climate decision-making that can be placed into three main categories: financial, structural, and social.

Perception and Environmental Understandings:

- When discussing climate change and the targeted landscapes, interviewees discussed climate related proxies, such as wildfire or beetles, rather than climate itself.
- The targeted landscapes are important to interviewees because of the activities that take place in these ecosystems rather the inherent value of the targets themselves.
Climate adaption under a range of scenarios:
Natural resource manager focus groups in the Gunnison Basin

Katherine R. Clifford
May 1, 2016

Geography Department
University of Colorado, Boulder
Southwest Colorado Social-Ecological Resilience Project
Funded by the North Central Climate Science Center (NCCSC)

Executive Summary:

Resource managers need to consider climate change in their management decisions and long term planning. Yet, while they are increasingly being tasked to incorporate climate change, many barriers and challenges exist that complicate integrating climate information and producing robust adaptation strategies. Climate change information is often at the global scale and projected over long time periods and this makes it difficult for managers to integrate it into local management plans with shorter timescales. Furthermore, the uncertainty of how climate will change, especially in hard-to-model mountainous landscapes, increases the difficulty of this task. To help address this challenge, localized climate scenarios were developed for the Gunnison Basin as a tool for resource managers to facilitate thinking about climate adaptation strategies.

This report summarizes the findings from four, scenario-driven focus groups of natural resource managers. Managers were asked to consider how to incorporate a range of future conditions into resource decisions. The scenarios specifically keyed into two target landscapes due to their social and ecological importance in the Gunnison Basin: spruce-fir forests and sagebrush shrublands.

The focus groups produced a number of key findings about planning for a range of future conditions, and potential adaptation strategies at a local scale:

• **Perceived Risk**: Participants largely agreed that a scenario with high variability in precipitation and temperature would be the greatest challenge for management. Furthermore, managers thought that scenarios without clear warming and drying trends, such as moderate temperature increases or high variability, would be harder for the public to recognize, which could undermine adaptation efforts.

• **Spruce-Fir and Sagebrush Landscapes**: Participants recognized that both target landscapes were undergoing change and that they could not manage for current conditions. Spruce-fir was already undergoing significant and rapid change and participants expected future disturbances to be longer in duration and higher magnitude. The sagebrush shrublands were considered ecologically vulnerable to climate change, and due to the strong dependence on this landscape by the ranching community, also socially vulnerable.

• **Potential Strategies**: Participants generated several strategies in response to scenarios; many were not novel, but instead used and built on previous practices. This indicates that managers might already have many of the tools and much of the knowledge needed to respond to a changing climate, and they discussed
utilizing existing management strategies and borrowing exemplars from other locations. However, increased flexibility in terms of funding, procedures, and management practices would improve managers’ ability to plan for a range of future conditions.

- **Conflict and Cooperation:** Participants interpreted potential changes through existing conflicts, with little discussion of new ones; this may indicate that climate change is not so different from other types of social-ecological changes, or that people have a hard time imagining subtle changes and altered future conditions. Participants felt the Basin has local capacity for cooperation, and they preferred bottom-up approaches such as collaboration fostered by locals rather than mandated, top-down adaptation protocols.

- **Climate Science and Scenarios:** Overall participants reported that the scenarios helped them interpret climate change impacts locally in the Gunnison Basin and consider a range of future conditions. However, participants requested more information about current baselines and the status of human communities be incorporated into the narratives. Future work should also consider how to promote thinking beyond past experiences.

These findings can help climate scientists understand how to better design useable climate science and also inform resource managers, and researchers, in how to develop and support climate adaptation strategies in the Gunnison Basin and beyond.

Introduction:

Natural resource managers have a challenging task managing for multiple goals and diverse users, and a changing climate complicates this already difficult job. The American West is already facing myriad climate change impacts, including higher temperatures and more water shortages, both of which are predicted to increase in intensity (Seager et al. 2007; Garfin et al. 2013). Changes in temperature and precipitation are in turn impacting ecological and social systems. This project used a scenario-based focus group process to engage natural resource managers in the Gunnison Basin in the development of adaptation strategies that respond to tangible landscape-scale changes as well as a range of futures possible under a changing climate. The process was designed to integrate landscape-scale projections and uncertainty into climate planning.

Large, undeveloped landscapes provide critical and represent opportunities to employ landscape-scale adaptation strategies. However, challenges remain regarding how to manage undeveloped landscapes in the face of climate change and uncertainty.

Climate models, or multiple models in an ensemble, can generate information that is challenging for natural resource managers to engage with, interpret, and use to inform decisions. In many cases, model information is provided as changes in averages, rather than ranges, and is focused on temperature and precipitation instead of other important climate and terrestrial metrics. Modeled data are also often at a regional scale, which can create a mismatch between the scale that managers and the public plan for and the information given to guide that planning. Further, while there are some processes that climate scientists are more confident in (e.g. global to regional temperature trends), great uncertainty exists about how climate change will affect particular places. Downscaled models are useful, but changes in scale carry increases in uncertainty. Mountainous environments, like those in the American West, are particularly challenging to predict.
because topography can shape weather patterns but Global Climate Models use coarse data that smooths sharp relief (Cozzetto et al. 2011; Rasmussen et al. 2011).

To address these challenges Intiaaz Rangwala, of the Western Water Assessment, and Renee Rondeau, of the Colorado Natural Heritage Program, spearheaded the development of narrative scenarios based on climate models and other biophysical data. Three narrative scenarios were developed for a 20-year timeframe to reflect three different plausible futures for the Upper Gunnison Basin. These scenarios bring together different data sources to paint a picture of how climate might impact the biophysical environment and people of Gunnison Basin, to make projections more detailed, tangible, and useful to managers. By producing three scenarios that describe a range of possible futures for the Gunnison Basin, managers were able to confront key differences in how their landscapes might change and think through how to manage under that uncertainty. Focus groups explored how scenarios might be used in decision-making.

This report highlights the findings from the scenario-based focus groups conducted during the summer and fall of 2014, which were part of a larger interdisciplinary, multi-landscape research project, the Southwest Colorado Social-Ecological Climate Resilience Project (SECR), funded by the Department of Interior’s North Central Climate Science Center (NCCSC). SECR project partners¹ and stakeholders aimed to facilitate climate change adaptation that contributes to social-ecological resilience, ecosystem and species conservation, and sustainable human communities in both the Gunnison and San Juan Basins.

Project Goal

The social science component of the SECR project examined decision-making under uncertainty and the use of narrative climate scenarios as a tool. Further, this research is focused on two targeted landscapes selected for the Gunnison Basin: the spruce-fir forests and the sagebrush shrublands. The Gunnison Climate Working Group (GCWG), a collaborative group of community members representing land and water managers, ranchers, county officials, university scientists and others, selected these landscapes because they will likely be affected by climate change, and community members see them as important for both social and ecological values. The two landscapes cover approximately one million acres within the Upper Gunnison Basin, with the sagebrush occupying the lower elevations and the spruce-fir extending to higher elevations.

Methods:

Four scenario-based focus groups were conducted in the Gunnison Basin between July and October 2014. Out of the 72 climate model outputs generated, Rangwala and Rondeau selected a model output with high temperature increases and precipitation decreases as the Hot and Dry Scenario. The Warm and Wet Scenario had mild

¹ Colorado Natural Heritage Program, The Nature Conservancy, Colorado State University, Mountain Studies Institute, University of Colorado, University of Montana, U.S. Geological Survey, Western Water Assessment, University of Colorado Cooperative Institute for Research in Environmental Sciences (CIRES), National Oceanic and Atmospheric Association (NOAA), and the Gunnison Climate Working Group.
temperature and precipitation increases, and the Feast or Famine Scenario had large oscillations between extremes, primarily strings of years with very high and very low precipitation.

The three scenarios represented different possible future climates for the Gunnison Basin, and researchers developed narratives for each model output to make their local environmental impacts more explicit for decision makers. The text of each narrative scenario was limited to two pages to make them manageable. Rangwala and Rodeau used a number of strategies to make narratives not only both technically accurate and maintain a high level of detail, but also accessible to a broad range of users. Comparisons to analog climates provided participants real world, local examples of what a new climate would feel like. Analogs included different towns that had climates similar to projections, or focused on previous climate events, like significant droughts. Similar scenarios have been used by the US National Park Service (Chaplin et al. 2007) and researchers studying decision making under uncertainty in the western United States (Murphy et al. 2015, Wyborn et al. 2014).

Changes in temperature and precipitation were translated into landscape level impacts to flora, fauna and ecosystem processes, such as increased invasive species or increased wildfires. Additionally, scenarios tried to capture inter-annual variability and extreme events.

<table>
<thead>
<tr>
<th>Scenario Title</th>
<th>Climate Description</th>
<th>Select Ecological Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot and Dry</td>
<td>Warmer and drier across all seasons with perennial drought</td>
<td>Sagebrush stands will likely convert to grasslands, aspens will be unable to recover from drought, spruce-fir stand species composition will shift and species may migrate to higher elevations</td>
</tr>
<tr>
<td>Warm and Wet</td>
<td>Warmer across all seasons, earlier snowmelt, with more winter precipitation (as snow and/or rain)</td>
<td>Maintain current stands, but the condition will degrade, increase in invasive species such as cheatgrass</td>
</tr>
<tr>
<td>Feast or Famine</td>
<td>High inter-annual climate variability with hot, dry years followed by cool, wet years, more floods and droughts</td>
<td>Increase in fire severity and intensity due to build up in wet years, fire danger in dry years</td>
</tr>
</tbody>
</table>

Focus group participants included a wide range of natural resource managers working in the Upper Gunnison Basin. Managers from federal, state, and local agencies were invited to participate and focus groups included representatives from the U.S. Forest Service, Bureau of Land Management, National Park Service, Colorado State Forest
Service, Colorado Parks and Wildlife, and the Natural Resources Conservation Service. Participants included experts in forestry, wildlife biology, range management, botany, fire management, and hydrology. Additionally, participants ranged from line-officers to specialists. The design intentionally mixed participants so that each focus group would have representatives from different agencies and specialties.

All managers who were interviewed earlier in the research project were invited to participate, along with new participants who were recommended by interviewees and other contacts. Three of the focus groups were conducted in Gunnison; one was held in Montrose. Overall, 18 resource managers participated in the focus groups, in groups of 3, 4, 5, and 6 individuals.

Each session started with an overview of the project directives, discussing and signing informed consent forms, introductions to the group, and ground rules. Next, participants read the Hot and Dry Scenario. After all of the participants finished reading the scenario, general feedback was solicited and a series of questions (see Appendix 1 for focus group questions) were asked about participants' responses to the scenario. Steps were repeated for Warm and Wet Scenario and the Feast or Famine Scenario. At the end of the focus groups, participants were asked to share their feedback about experiences with the scenarios and the process of thinking through uncertainty.

Each focus group was conducted by the author and lasted two hours. All focus groups were audio-recorded and transcribed verbatim to assist in analysis. Transcripts were then coded using Nvivo software with explicit (water resources, barriers, etc.) and implicit (risk, fear, frustration, etc.) codes. Coding was used to identify themes and facilitate analysis.

Key Findings:

1. Risk Perceptions:
 Scenario-Specific Feedback
 The three scenarios elicited very different responses, offering useful insights into the risk, vulnerability, adaptation and perception of Gunnison Basin managers. The Hot and Dry Scenario and Feast or Famine Scenario matched the personal climate experiences closely and current climate observations could easily fit into or lead to either trajectory. Many participants expressed that the Hot and Dry and Feast or Famine Scenarios were “already starting to happen.”

 Each scenario carried different risks with the Feast or Famine Scenario being considered the greatest threat and the Warm and Wet Scenario considered the most benign. The majority agreed that the Feast or Famine Scenario was the greatest threat because of management challenges associated with a highly variable system. It was feared that the oscillation between the two extremes would lead to people constantly being blindsided and promote reactionary, triage-oriented management. However, opportunities may exist with highly skilled management that harnesses resources in feast years and conserves during famine years. The Warm and Wet Scenario was generally considered the “best case scenario,” but participants discounted its probability of occurring, in part because it did not match their own personal climate observations and conflicted with meta-narratives of climate change.
One of the greatest factors that contributed to perceived risk was the trajectory of change and how clearly it could be interpreted. Managers discussed that even a predictable, but less ideal climate (like the Hot and Dry Scenario that has significant water resource limitations) is preferable to a climate with high variability because it was so difficult to craft effective management strategies. Participants worried that it would be much harder for the public to recognize the changes in the Warm and Wet and Feast or Famine Scenarios. This would make it much harder to obtain public support and financial resources for climate adaptation plans. There were minor disagreements about threat level because a few individuals thought that the Hot and Dry Scenario carried the greatest risk with its constant lack of water resources, but most agreed it would be easier to manage for, even if it was a more severe departure from the current climate.

2. Spruce-Fir and Sagebrush Landscapes:

All three narratives described anticipated changes to the two landscapes due to climate change, and this helped managers think about the management needs and possible threats to the targeted landscapes. Participants discussed the main risks of each scenario and what implications it would have on the larger system.

Spruce-Fir:

The descriptions of future spruce-fir were questioned more than other landscapes because participants thought that there would be very little spruce-fir forest left by 2035. A total transformation was expected within this landscape and people commented that the system would forever be changed after the on-going beetle disturbance and that it would not return to this recent past state in their lifetime. Many suggested that attempting to manage for the recent past conditions was not realistic and it would only become harder to restore spruce-fir landscapes. A reduction in spruce-fir would likely increase aspen groves, and have recreation impacts and wildlife implications because of altered thermal dynamics and habitat conditions. To respond to changes, participants said they would need to be prepared for longer duration and higher magnitude disturbances such as the beetle infestation and wildfire. Connectivity between the few existing patches of spruce-fir “islands” and newer generation was discussed as a critical management goal. Additionally, there was debate over whether managers should resist changing ranges by planting saplings in historic ranges or assisting migration and planting at higher elevations, which was similar to the interview results (Clifford 2015). Some participants worried that these changes could increase conflict, as there were greater pressures on the alpine landscape from recreation (skiing) and wildlife.

Sagebrush:

The climate changes outlined in all scenarios would impact the sagebrush landscape and have cascading impacts through ecological and human communities, so discussions of sagebrush often quickly migrated to discussion of local economies and wildlife. One of the largest concerns – especially from the Warm and Wet Scenario – was invasive species, namely cheatgrass. Participants feared that a warmer environment would make the sagebrush landscape more susceptible to invasive and generalist species. Invasion of cheatgrass would reduce the value of shrubland for wildlife and ranchers and be difficult to fight; it would require significant work from private landowners.
Furthermore, longer and more extreme droughts were thought not only to be able to change the distribution of sagebrush, but to be intense enough to kill the species and push past system flexibility. These changes were expected to have large impacts on the Gunnison sage-grouse and on the ranching economy. If the sage-grouse\(^2\) were listed as endangered it would result in a number of land use restrictions challenging land management and local ranching operations. Even without a listing, participants worried that climate changes may affect the sagebrush landscape enough to endanger the ranching operations and possibly push them past their coping capacity. This could lead to large numbers of ranches going out of business, which would impact the local culture as well as the landscape if ranches were subdivided and developed, further fragmenting the landscape.

While many risks to sagebrush were identified, some changes may not be as threatening, and some could even be considered positive, at least in relation to other climate impacts. Some level of drought could be beneficial to the landscape because it might create successional processes and a mosaic landscape that would offer more local level diversity. Furthermore, unlike the spruce-fir landscape, which has limited space for upward migration due to its high elevation, sagebrush does not have spatial limitations and could migrate upward to higher elevations. This possibility raised questions about the rate of change in the system: would the changes occur too fast for sagebrush to adapt? This was a major concern and facilitating adaptation consistent with rate of change would be a key role for resource managers.

3. Potential Strategies

At the end of each focus group, and after all three scenarios were reviewed, the researcher asked participants what types of strategies they could use in response to the changes described in the scenarios. They were asked to think about responses to each of the scenarios individually as well as responses that would be robust in response to the range of possibilities exhibited by the scenarios.

Many of the strategies discussed were not novel practices, but rather built on existing strategies and plans employed by land managers, often with increased resources, intensity or flexibility. Adaptive management, collaborations among agencies, intensive seedling planting and regular revisions of management plans were all suggested. Prescribed fire and timber harvesting were considered important strategies especially as they pertained to future fire risk. This indicates that many climate adaptation strategies can fit within existing management frameworks and may not require managers to design totally new approaches.

\(^2\) The focus groups were conducted before the sage-grouse was listed. On November 24\(^{th}\), 2014 the US Fish and Wildlife service determined the Gunnison sage-grouse required protection under the Endangered Species Act as a “threatened species.”
However, current strategies would be greatly facilitated by increased funding, capacity and flexibility. Managers spoke about a number of barriers that inhibit current strategies and would further inhibit climate adaptation. The amount of funding and the strict temporal guidelines for grants and financial resources made it challenging to respond to change and unanticipated events. Many lamented that they had to apply for project funding years ahead of time when it was hard to determine what the landscape needs would be. Additionally, lack of funding and capacity made it challenging for managers to implement strategies at the scale and intensity they wanted to, and to maintain up-to-date monitoring to inform management decisions. Flexibility, in all dimensions, was important to managers because it would allow them to better practice adaptive management and would allow them to respond creatively, quickly and effectively to management challenges arising from climate change. Addressing current barriers to flexibility is a clear strategy to serve climate adaptation.

Some of the focus groups discussed a strategy of increasing landscape “resiliency.” Discussions were largely focused on a particular example: the Gunnison Climate Working Group and The Nature Conservancy efforts to build simple restoration structures to slow and store water in riparian areas and wetlands within the sagebrush landscape. Building rock structures represents a “no regrets” strategy that would serve all three scenarios well, especially as they address what managers felt was the most critical resource in the system: water. Many discussed how much they appreciated a concrete

3 The Gunnison Climate Working Group has been implementing a multi-year project building simple yet innovative restoration structures to help riparian and wetland habitats retain water and help the Gunnison sage-grouse and other wildlife species adapt to a changing climate. For more information see: http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/colorado/colorado-simple-structures-help-wildlife.xml
example of how a climate adaptation strategy could be designed and employed because it felt like such an abstract idea beforehand. Additionally, it was part of a process that worked across agency lines and in partnership with private landowners. Participants suggested additional rock structures as a strategy that addressed all scenarios.

In addition to current management practices, participants discussed adopting new climate adaptation strategies from other field offices and looking to other case studies to see what approaches work. They spoke of the importance of sharing information across agency lines locally, but also reaching out to other districts, especially other high alpine, mountainous locations like Montana, or even other countries. Looking to case studies would allow managers to gain knowledge from experimentation and could be achieved with limited capacity due to staffing and financial constraints. This would require increased communication between districts, which often operate in isolation, and would prevent everyone from trying to “reinvent the wheel.”

The primary focus on current management options, or small changes to current management practices, raises several questions. Does this indicate that new and transformative strategies are not required to address climate change? Or, is this indicative that it is challenging to think beyond the current management toolkit for new management possibilities? The answer to this question, which is beyond the scope of this report, is likely a combination of the two, but can help provide insight into climate adaptation strategy development and decision-making. Regardless, managers were able to brainstorm how to utilize current strategies and in some cases include new strategies to respond to a range of future condition.

Spruce-Fir and Sagebrush Focus

Participants were asked follow-up questions about what strategies they would use specifically for the spruce-fir and sagebrush landscapes. Each focus group had a mix of specialties, so some focused more on one landscape over another, and many of the strategies generated were not new approaches, but were in line with their current management. Strategies for spruce-fir included: maintaining genetic diversity, allowing disturbances, and maintaining connectivity. The strategies for sagebrush included: protection from grazing, increasing groundwater infiltration, and decreasing the spread of noxious weeds.

While they were able to generate specific ideas for the target landscapes, participants thought about landscape strategies more broadly and often thought at the scale of the Gunnison Basin. Narratives gave specific information about the target landscapes, but participants generated ideas that crossed political and ecological boundaries and saw strategies and broad approaches to climate impacts in the Basins.

4. **Conflicts (and Cooperation):**

Conflict is often discussed as one of the social consequences of climate change, but this research found that participants generally did not expect new conflict; climate change was primarily interpreted through existing social conflicts. Participants were asked to identify threats or potential conflicts that would be associated with each scenario. While a few new conflicts were discussed as potential results, the reliance on previous conflicts illustrates how people interpret scenarios and understand them through
their previous experiences, and suggests that they may struggle with trying to anticipate new dynamics.

This can be understood as a strength but also a potential limitation for integrating climate into decisions. It may indicate that climate changes are not so different from other disturbances or social-ecological changes, or that people have a hard time imagining the unimaginable or unseen. Furthermore, this finding illustrates how climate transforms into a social process and how the interpretation of climate information is not objective and based on statistics, but formed and shaped by the previous experiences of the individual. The same scenarios can elicit different levels of perceived threat, conflict, or optimism.

Potential Conflicts:

Potential conflicts were greatly influenced by the agency and expertise of participants, type of scenario and individual experiences and beliefs. However, general themes emerged about the type of conflicts participants anticipated.

- **Management:** The stress of climate change on resources could potentially pit different agencies against each other and strain relationships when managing complex landscapes with disturbances (e.g., fire, beetle) or legal issues (e.g., ESA). Participants recognized that changes would transcend agency boundaries and require coordination, but different management agencies have different goals and approaches to management that could be challenging to reconcile. Furthermore, different agencies have access to different levels of funding and participants worried that some agencies and projects might be favored over others. This might be exacerbated by disparity between the funding levels and institutional support of different agencies.

- **Multiple Uses:** Accommodating multiple (and divergent) uses was already challenging for managers and they felt like this mandate would be increasingly problematic with climate-stressed resources. Struggles between stakeholder groups for access to and use of resources would become heightened. Many thought that they would need to say more “no’s” and this would restrict access and their ability to compromise. While there are many stakeholders that could be embroiled in conflict, three interests emerged as particularly susceptible in the Basin: ranchers, recreationalists, and wildlife\(^4\). Each of the three were assumed to be in direct conflict with each other and likely to create management challenges.

- **Altered geographies:** Altered ranges and geographies is a conflict that was largely new and outside the personal experiences of participants. Managers were worried that ranges projected to shift due to climate change would disrupt the tenuous balance between the stakeholders and different uses. Recreation, wildlife, plant species and demographics were all expected to experience a change to their historic range and the new ranges might increasingly overlap, creating strain on resources and pitting different uses against each other.

\(^4\) including the management plans and laws.
Trans-local connections:

Climate change does not only affect Basin residents through direct impacts but can also be felt through trans-local connections; climate impacts to other parts of the West may be important drivers of, for example, migration and water resource conflicts. Issues of migration and population change outside of the Basin could create conflicts over resource management within the Basin and this was especially pertinent to water resources. Participants discussed how increased temperatures and climatic changes in more vulnerable places, e.g., Texas or the Colorado Front Range, may drive increased migration to the Basin and further burden resources. Similarly, climate changes and droughts outside the Basin could strain water resources and spur new diversions and water calls that would limit water use in the Basin. Human migration patterns and legal frameworks connected disparate localities in a shared climate risk that operates in nested scales. Trans-local connections could transfer climate impacts from places with greater vulnerability to the Gunnison Basin. This was especially worrisome because managers have little to no jurisdiction over resource use outside of the Basin that could severely impact resources inside the Basin.

Water Resources:

Water resources evoked the greatest sense of threat in the climate scenarios showing that it was an extremely vulnerable system important to social and ecological communities. Participants viewed their environment as hydrologically limited and less flexible to changes of precipitation than temperature; many felt that if water stayed consistent that the Basin could survive, albeit with challenges due to increases in temperature. Water resources were discussed in response to all scenarios and were important to ecological and social systems. Almost all the conflicts were directly or indirectly connected to water resources and the stresses from reduced runoff. While most of the risk and potential conflicts were discussed in terms of drought and water shortages, participants acknowledged that an unpredictable system with extremes could also generate harmful impacts.

Reservoirs:

Reservoirs emerged as an increasingly important water resource element with climate change. In response to climate changes, people expected their management to become more complicated and for more reservoirs to be built. This could make it increasingly challenging to maintain naturally functioning or flowing rivers and likely have many impacts on ecological and human systems as an indirect effect of climate change. Reservoirs could be needed to keep water in the high country if snow melted off earlier and they may play an increasing role in flood management, as people expected the melt to be more “flashy.” Many discussed that water storage through snowpack in the high country is ideal because of its timing (it slowly melts and provides a more constant supply of water) and because it retains water (unlike reservoirs which can loose water to evaporation).
Collaboration:

While scenarios elicited feelings of threat and worries about potentially exacerbated conflicts, participants were still largely optimistic about cooperation and collaboration in the Basin. The Basin may be able to avoid some of the potential conflicts because it has already proven that it is successful in working across agencies and stakeholder groups. Gunnison Basin managers were proud of their communities’ ability to work collaboratively, and many stated that relationships in the Basin were much better than in previous locations they had worked. Past experiences may highlight important capacities for future resource challenges.

Droughts and years with extreme snowpack have always occurred in the Basin, and the community has created local, voluntary and context-specific solutions to address associated resource challenges. A few participants cited the example of voluntary fly-fishing restrictions during the drought of 2012. As water levels decreased, the Basin’s fishers stopped using the lower stretches to help maintain fish populations. This was not a product of government regulation or restriction, but rather self-regulation of nongovernment actors. Additionally, managers spoke of the joint EA (Environmental Assessment prepared under the National Environmental Policy Act (NEPA)) on salvage timber that the USFS and BLM were submitting together. Large landscape challenges like beetle kill, fire, and the federal listing of species already required agencies to collaborate.

Self-regulation and local agency control seemed to be much more favorable approach than top-down regulation for collaboration between actors. This was especially clear at the time the focus groups were conducted, in the attempts to avoid a Gunnison sage-grouse listing under the Endangered Species Act (ESA). Several community groups united to avoid a federal listing. Many worried that if the Gunnison sage-grouse was listed, it would undermine and discourage future voluntary, collaborative efforts. Conversely, the threat of the listing—and the local, collaborative planning in response—may have strengthened social ties across agencies and stakeholders and built capacity to respond to climate change.

Examples of cooperation indicate that the community has built capacity and has experience cooperating on a common goal, but also that this behavior is largely in response to imminent threat (often of regulation) or in response to a disturbance. Organizing around threats has built strong social ties and networks that can be utilized in future decision processes, but collaboration in response to threats may have its limitations as to what types of community issues can be addressed. It may be challenging to apply this response to climate change because the threat is not as explicit as a regulation or visible as beetle kill, yet it will require similar, if not greater, collaboration. The trajectory of climate change, and the ability for people to see a trend, will likely influence how it is responded to; the Feast and Famine Scenario may make it harder to identify the “threat” or trend and more challenging to foster community collaboration. However, a collaborative group, the Gunnison Climate Working Group, already exists and is planning for short and long-term climate impacts, which indicates that the capacity built through previous threats may be applicable to climate change.
5. Climate Science and Scenarios:

Climate Science

Participants responded positively to the scenarios, their level of detail, and their Gunnison contextualization, but wanted more information about specific processes or additional systems to capture a more dynamic future. Precipitation information that explains general trends in quantity was not enough; people wanted information about the intensity of precipitation because strong pulses would have different impacts than typical rain patterns. Many were concerned that the system would become “more flashy” and were especially interested in differentiating forms of precipitation (snow or rain).

Another request was to include people in the scenarios. Most felt like scenarios captured a plausible future well, but they said it was hard to evaluate them without information about what people were doing in the Basin. They were especially interested in population size, migration patterns and resource use. A significant part of a resource manager’s job is managing the use of resources for and by people, so it was challenging to think about management without information about the human population. Those participants felt that excluding people made the scenarios less robust and only captures a small piece of what the future might look like.

While many participants are familiar with baseline conditions in Gunnison, some needed more information about current systems to understand the magnitude of the described changes. In an effort to keep scenarios short and readable, information that was not deemed essential was excluded. Some participants were unsure of baselines outside of their specialty, and so it was harder to understand how much a described change would alter the system. For example, a few were unsure what magnitude of change would occur from decreasing precipitation one inch annually. Most participants did not need this information and groups were able to answer questions collectively, but detailed footnotes may prove helpful for disseminating the scenarios to other groups with different backgrounds.

Participants thought that the scenarios depicted realistic impacts for the basin in light of climate change, but many questioned the rate of change. Scenarios were written with specific attention to ecological targets and all discussed changes to spruce-fir. Projected spruce-fir changes were slower than participants envisioned. A number of people commented that the spruce-fir changes projected 20 years out were already occurring and that there would barely be any spruce-fir left in 20 years. Interestingly, other comments were that the rates of change in other aspects of the scenarios were unrealistically fast. It was hard to believe that some of the changes described would take place in just 20 years; participants suggested that some changes may take longer and that some were already occurring.

The narrative form, local landmarks, and use of comparative reference years made scenarios more accessible, but they also limited the range of imagined futures. Climate was bounded through past experiences, and both the narrative scenarios and participants used past extremes as reference years to interpret information. Reference years were a useful strategy in helping make future projections more accessible. When people read that there would be more years like 2002 and 2012, they knew what it meant; they knew how that scenario translated into landscape changes. This both works to make climate projections tangible and fit within knowledge systems and it limits the possible range of
options, which could detract from adaptation planning. Part of thinking about uncertainty and impacts of climate change must be to think about events that depart from past weather and climate. Future attention could be given to how to promote thinking about events that are unlike past events and do not correspond to reference years.

Process and Participation

Access to climate science was not the only valuable part of the focus groups for participants, they also found the process and interactions with others to be useful. Most had thought about climate change, but focus groups provided contextualized information on how climate change might impact the Basin and helped “start a conversation.” A number of participants explained how important this step was for their understanding of how to “do” adaptation. Many remarked that they understood adaptation conceptually, but were challenged by how to perform adaptation and move from vulnerability analysis to implementation.

One of the greatest benefits to participants was using the focus groups as an exercise to think in new ways about the environment in which they worked. The scenarios guided managers’ discussions and facilitated thinking about new management strategies outside of traditional approaches. Managers spoke about having so many duties and responsibilities that they rarely had time for “thought exercises,” to re-think how they approach issues, or to give time to explore hypothetical situations. They felt time-stressed and appreciated the opportunities to think at new scales. The scenarios asked participants to think on longer time scales than is usually required in their work, which is driven by annual or 5-year management plans, and feedback indicated that they appreciated moving the focus from a single species or system, to look at the Basin scale and multiple intersecting systems.

Participating in the processes with colleagues from different agencies was a benefit in and of itself, and it further built local capacity. Participants appreciated conversations with managers with different specialties (both within and outside of their home agencies) because it helped them think beyond their specific focus (i.e. grazing, recreation, forestry, etc.) and think about how different systems and species would interact. This indicates that the scenarios alone might not provide the same benefit. Instead, management is a social action that requires engagement between agencies and beyond the target resource.

Conclusion:

This report discusses a number of findings that relate to management decisions, climate information, uncertainty, scenario processes and localized impacts of climate change. The exercise of thinking through multiple, possible, future climate scenarios shows the complexity of decision making and the barriers to planning with uncertainties. Along with a number of specific findings that help understand the dynamics in the Gunnison Basin, some of the findings touch on larger themes that apply to climate adaption for resource management generally.

This research suggests that managers may not need completely new skills, tools, and knowledge to adapt to climate change. Managers already have a suite of knowledge and strategies that can be harnessed to adapt to climate change, but they may need to change how they think about the future by integrating new perspectives, like planning for
a range of future conditions. This report highlights that the regulatory landscape affects how strategies can be mobilized by the way it divides up landscapes, allocates funding, requires protocols, and uses standardized procedures. Yet, increased flexibility may be important to facilitate climate adaption, especially when planning for uncertainty. Furthermore, the risks and threats of climate change not only affect the ecology and natural environment, but also affect social dynamics. Integrating both types of systems, physical and social, is important for understanding which scenarios pose the greatest threat.

Research Note: Thank you to all participants who volunteered their time, shared their experiences, and offered their expertise and local knowledge to the project. This research depended on the dedicated and generous land managers in the Gunnison Basin.
References:

Daniel J Murphy, Carina Wyborn, Laurie Yung, Cory Cleveland, Lisa Eby, Solomon Dobrowski, Erin Towler, and Daniel R. Williams (2016). Engaging Communities and climate change with Multi-scale Iterative Scenario-building in the Western US. Human Organization, 75 (1).

Appendices

Appendix 1: Focus Group Questions

Focus Group Questions (questions in italics can be skipped if there isn’t enough time)

1. What’s your initial reaction to this scenario?
2. What’s particularly concerning about this scenario?
 a. *How might this scenario impact management of public lands in the Gunnison?*
 b. *How might this scenario impact the local ranching community?*
 c. *How might this scenario impact the broader community?*
3. *What kind of problems/disputes/conflicts arise in this scenario?*
4. *What kinds of opportunities are present in this scenario?*
5. What types of management strategies would you consider to deal with this scenario?
 a. How about management strategies to specifically address changes in sagebrush areas?
 b. How about management strategies to specifically address changes in spruce fir areas?
6. What are the barriers to implementing the strategies you’ve described?
7. Who needs to work together or collaborate to effectively respond?
8. How does this process help you think about making management decisions in the face of change and uncertainty?
Appendix H. Social Ecological Response Models Methods

Overview

Situation Analysis and Diagram: Methods Overview

Background
A Situation Analysis assesses the important ecological, socioeconomic or political factors and trends affecting the ability to meet management and conservation goals. These factors may act as constraints or provide opportunities for making progress toward goals. Key factors include direct and indirect threats, opportunities and enabling conditions.

The analysis describes the current understanding of a project’s ecological status and trends, and the human context. A clear understanding of what is happening within a large-scale landscape is critical for developing strategies that make sense for the specific conditions.

A Situation Analysis probes the root causes of critical threats, degraded species and vegetation, and other values to make explicit the contributing factors — the indirect threats, key actors and opportunities that enable successful action. By understanding the biological and human context, the team can develop appropriate goals and objectives, identify intervention points, and design adaptation strategies.

A Situation Analysis answers:

- What factors, positive and negative, affect our conservation targets and ability to achieve our goals?
- Who are the key stakeholders linked to each of these factors and what motivates each of them?
- What ecosystem services and human well-being targets (livelihoods) are provided by the landscape?
- How will the targets, factors, and ecosystem services be affected by climate change?

The process of creating a Situation Analysis helps us:

- Articulate and test the logic of our thinking
- Identify the most critical factors that cause threats
- Summarize compelling evidence concerning trends in these factors
- Highlight key stakeholders and opportunities
• Focus on what is most important
• Identify intervention points for developing the most appropriate strategy

A common understanding can bring together:

• Different visions of what will be accomplished through conservation work
• Different perspective of the project’s context
• Disparate knowledge and understanding of trends in socioeconomic, political and ecological factors
• A wide variety of assumptions about these trends and what is most important to address
• A range of perspectives about leveraging opportunities
• Multiple definitions or uses for the same term

Method

1. Diagram the current condition of the system describing the socioeconomic, political and ecological factors

2. Add in the climate change scenario and determine whether any additional factors need to be added. Discuss whether any of the existing factors significantly increase or decrease with the climate change scenario in mind.

3. Identify intervention points. Where is action needed?

4. Identify high level strategies that are needed at the intervention points.

A Situation Diagram is a box and arrow model that shows the linkages between the conservation values, threats, and other factors. By creating a diagram, intervention points become clear.
Example

Developed for Gunnison sage-grouse at the Gunnison Basin Climate Change Adaptation Workshop for Natural Resources Managers held in 2009.

Additional resources and information about the Situation Diagram process can be found at the website below:

Chain of Consequences: Methods Overview

Background
Established by Secretarial Order 3188 in 2012, the Department of the Interior (DOI) Strategic Sciences Group1 (SSG) provides the DOI with the capacity to rapidly assemble teams of experts to conduct science-based assessments of environmental crises affecting DOI resources, and provide results to leadership as usable knowledge. To do this, SSG “crisis science teams” effectively act as “pop-up think tanks” to identify the potential short- and long-term environmental, social, and economic cascading consequences of the crisis, and determine intervention points.

Method2
Through facilitated discussion, the team of experts builds Chains of Consequences. This process is used by the SSG and was developed by its predecessor, the DOI Strategic Sciences Working Group in 2010. The process involves four main steps:

1) Establish the scope (ecological and geographic area of interest, focal time period) and define assumptions.
2) Develop detailed Chains of Consequences that illustrate important cascading effects on the coupled natural-human system.
3) For each element in a chain, assign a level of scientific uncertainty (see example below).
4) Identify potential interventions at points in the chain at which scientists, policy makers, and others might take specific actions to significantly alter the outcomes of the cascade.

Example3
Chains of Consequences developed by the SSG Hurricane Sandy crisis science team determined that overwash and breaches of barrier islands were certain to occur because of the storm (assigned an uncertainty value of 5), leading to advance of bay shoreline (beach growth as a result of sand redeposition following the storm; assigned a value of 5), and to the probable creation of new habitat (assigned a value of 3). This information was used to develop interventions such as mapping and measuring the protection services of key ecosystems such as dunes and wetlands. Interventions were delivered to decision-makers during briefings and in the final SSG Hurricane Sandy report.

1 For more information on the Department of the Interior Strategic Sciences Group, please see www.doi.gov/strategicsciences

Figure H-1. Example Chains of Consequences developed by the SSG Hurricane Sandy crisis science team: Changes in coastal geomorphology as a result of Hurricane Sandy. Credit: Department of the Interior, 2013.
APPENDIX I. SITUATION ANALYSIS DIAGRAMS

In the following diagrams, the conservation target components of each landscape are shown as ovals within a green box. Direct threats or impact categories are represented as pink rectangles, and are influenced by a variety of factors shown as orange rectangles. Strategies or interventions are represented as yellow hexagons. The eventual “human wellbeing” targets are depicted as ovals grouped within a brown box.
Figure I-1. Situation Analysis for Sagebrush Landscape (Morning Session)
Figure I-2. Situation Analysis for Sagebrush Landscape (Afternoon Session)
APPENDIX J. CHAIN OF CONSEQUENCES

The following Chains of Consequence were developed by participants at a workshop in Gunnison on April 22, 2015. The four diagrams illustrate important cascading effects of drought and wildfire on the coupled natural-human sagebrush system for the Feast and Famine Climate Scenario. The green boxes indicate ecological consequences, the yellow boxes indicate social-economic consequences, and the numbers on the arrows indicate interventions (see list of potential interventions in the lower left corner).
Figure J.1: Sagebrush Landscape, Drought. AMR group.
Figure J-2. Sagebrush Landscape, Drought, PM group.

INTerventions (CONSequeNCE. MITIGATING INTERVENTION):
1. Invasive plants: Increase weed management efforts (increased time, funding, people, education to reduce risk, travel management).
2. Wyoming sagebrush dieback: Selective thinning/density reduction of sagebrush stands to improve sagebrush resilience.
3. Forest mortality: Assisting landscape transformation by removing standing dead trees to reduce predator perches.
4. Forest mortality: Selective treatment of aspen stands to increase resilience.
5. Forest management, Wyoming sagebrush, loss of irrigation water: Develop on-farm practices to reduce the impact of wildfires or mountain shrub to improve water retention.
6. Decrease water runoff: Increased number of in-stream water rights that can be retained or maintained/converted (improve fish habitat but may affect agriculture).
9. Reduced grazing: Altered grazing practices (e.g., grass banks), leveraging vacant allotments to be used as grass banks, altering class of livestock being grazed (breed or cow-calf vs. steers), optimize timing and intensity and duration.
Figure J-3. Sagebrush Landscape, Wildfire, AM group

KEY
Green: Ecological Consequence
Yellow: Social/Economic Consequence
Numbers on arrows: Interventions (see below)

AM - FIRE (Consequence: Intervention)
1. Resetting succession: Seeding to plant desirable species post disturbance (to get sagebrush back sooner).
2. Resetting succession: Prescribed fire to decrease fuel loads, help create fire breaks.
3. Additional research on fire in sagebrush landscapes and learn from analogs in Great Basin.
4. For both Wyoming and montane sagebrush: Develop suppression plans for different sagebrush landscapes
5. Line from wildfire to increased invasive plants: Weed management
6. Property loss: Wildland Urban Interface (WUI) field treatments
7. Montane sagebrush migrating up in elevation: Allow transformation of upper elevation
8. Wyoming sagebrush: Explore possibilities for new seeds (e.g., different genotypes)
Appendices. Sagebrush Landscape: Upper Gunnison River Basin, Colorado

Figure J-4. Sagebrush Landscape, Wildfire, PM group.
APPENDIX K. IMPACTS AND ACTIONS ASSOCIATED WITH THREE CLIMATE ADAPTATION STRATEGIES

The following tables (1-3) summarize the impacts and actions associated with the three strategies that we focused on during our February 23, 2016 adaptation workshop and were the focus of the final workshop in April, 2016.

Table K-1. Impacts and actions identified for the “Identify and Protect Refugia” strategy.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Action</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased severity of drought leads to ranchers selling and likely increasing ranch subdivisions</td>
<td>Implement full range of protection tools for ranches</td>
<td>Identify and protect refugia</td>
</tr>
<tr>
<td>Habitat conversion due to human development</td>
<td>Manage development in sagebrush landscape to reduce conversion</td>
<td>Identify and protect refugia</td>
</tr>
<tr>
<td>Loss of sagebrush</td>
<td>Identify climate and soil attributes that favor sagebrush under each scenario (refugia)</td>
<td>Identify and protect refugia</td>
</tr>
<tr>
<td>Loss of sagebrush</td>
<td>Develop a spatial map for three scenarios, based on above criteria</td>
<td>Identify and protect refugia</td>
</tr>
</tbody>
</table>

Table K-2. Impacts and actions identified for the “Proactive Treatment for Resilience” strategy

<table>
<thead>
<tr>
<th>Impact</th>
<th>Action</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased invasive species</td>
<td>Apply weed management</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Increased cheatgrass invasion</td>
<td>Use a coordinated proactive basin-wide management approach to prevent invasion of invasives, e.g., cheatgrass</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Increased invasive plants</td>
<td>Use a coordinated proactive basin-wide management approach to prevent invasion of invasives, e.g., cheatgrass</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Crested wheatgrass competition impacts seeding success in Wyoming sagebrush</td>
<td>Improve condition of sagebrush system with seeding, water, weed management, and diversifying age classes</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Decreased wildlife (review SA and CC notes and expand)</td>
<td>Improve soil health (decrease erosion, increase organic matter, seeding practices, grazing practices, habitat management, seed bank) to improve resilience</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Sagebrush die-off and loss of herbaceous species</td>
<td>Improve soil health to reduce low elevation sagebrush and forb die-off by decreasing erosion, seeding, improving grazing practices to increase resilience</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Increased soil erosion</td>
<td>Improve soil health (decrease erosion, increase organic matter, seeding practices,</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Impact</td>
<td>Action</td>
<td>Strategy</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Grazing practices, habitat management, seed bank) to improve resilience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced grazing capacity</td>
<td>Alter grazing practices (e.g., grass banks), leveraging vacant allotments to be used as grass banks, altering class of livestock being grazed (breed or cow-calf vs steers), optimize timing and intensity and duration</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Altered succession</td>
<td>Develop snow fences for both aspen and mountain shrubs to improve water retention</td>
<td>Proactive treatment for resilience</td>
</tr>
<tr>
<td>Wyoming sagebrush dieback</td>
<td>Selectively thin Wyoming sagebrush to decrease density to improve resilience</td>
<td>Proactive treatment for resilience</td>
</tr>
</tbody>
</table>

Table K-3. Impacts and actions identified for the “Assist and Allow Transformation” strategy

<table>
<thead>
<tr>
<th>Impact</th>
<th>Action</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered succession</td>
<td>Explore new seed possibilities and plant seeds of desirable species after disturbance to restore sagebrush</td>
<td>Assist/allow transformation</td>
</tr>
<tr>
<td>Aspen mortality</td>
<td>Apply selective treatment of aspen stands, e.g., remove dead aspen trees to reduce predator perches; snow fences</td>
<td>Assist/allow transformation</td>
</tr>
<tr>
<td>Montane sagebrush shifts to higher elevations</td>
<td>Facilitate movement of montane sagebrush to higher elevations</td>
<td>Assist/allow transformation</td>
</tr>
<tr>
<td>Wyoming sagebrush dieback</td>
<td>Explore new seed possibilities</td>
<td>Assist/allow transformation</td>
</tr>
</tbody>
</table>